LA-UR-02-1930

Approved for public release;
distribution is unlimited.

Title: | DESIGN AND IMPLEMENTATION OF
LOW- AND MEDIUM-FIDELITY
NETWORK SIMULATIONS OF

A 30 TERAOPS SYSTEM

Author(s): | Erancis J. Alexander

Kathryn Berkbigler
Graham Booker
Brian Bush

Kei Davis

Adolfy Hoisie
Steve Smith

Submitted to: | \norld-Wide Web

Los Alamos

NATIONAL LABORATORY

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S.
Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government
retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S.
Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the
auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher’s right to
publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Form 836 (8/00)

Design and Implementation of
Low- and Medium-Fidelity Network Simulations of a
30-TeraOPS System

Francis J. Alexander, Kathryn Berkbigler, Graham Booker,
Brian Bush, Kei Davis, Adolfy Hoisie, and Steve Smith
Los Alamos National Laboratory
Los Alamos, NM 87545

Thomas P. Caudell, Donald P. Holten, Kenneth L. Summers, and Cheng Zhou
Albuquerque High Performance Computing Center

University of New Mexico
Albuquerque, NM 87131

1 April 2002

Abstract

The magnitude of the scientific computations targeted by the ASCI project requires as-yet
unavailable computational power. To facilitate these computations ASCI plans to deploy mas-
sive computing platforms, possibly consisting of tens of thousands of processors, capable of
achieving 10-100 TeraOPS. For various reasons the current approach to building a yet-larger
supercomputer—connecting commercially available SMPs with a network—may be reaching
practical limits. The path to better hardware design and lower development costs involves per-
formance evaluation, analysis, and modeling of parallel applications and architectures, and in
particular predictive capability. We outline an approach for simulating computing architectures
applicable to extreme-scale systems (thousands of processors) and to advanced, novel architec-
tural configurations. The proposed simulation environment can be used for: (i) exploration of
hardware/architecture design space; (ii) exploration of algorithm/implementation space both
at the application level (e.g. data distribution and communication) and the system level (e.g.
scheduling, routing, and load balancing); (iii) determining how application performance will
scale with the number of processors or other components; (iv) analysis of the tradeoffs between
performance and cost; and, (v) testing and validating analytical models of computation and
communication. Our component-based design allows for the seamless assembly of architectures
from representations of workload, processor, network interface, switches, etc., with disparate
resolutions, into an integrated simulation model. This accommodates different case studies that
may require different levels of fidelity in various parts of a system. Our initial implementation,
comprising low- and medium-fidelity models for the network and a low-fidelity model for the
workload, can simulate at least 4096 computational nodes in a fat-tree network using Quadrics
hardware. It supports studies of both simulation performance and scaling, and the proper-
ties of the simulated system themselves. Ongoing work allows more realistic simulation and
visualization of ASCI-like workloads on very large machines.

1 Introduction

This report outlines the our goals and the progress we have made towards their realization as of
the second quarter of FY’02. We have parallel efforts underway in the following areas:

e underlying simulation framework;
e workload models (direct and statistical);
e network models (low and medium fidelity); and,

e visualization.

The first section outlines our goals and our approach to meeting them. The next section presents
the results of our evaluation of the DaSSF discrete-event engine used for the simulations. Next is
a description of how network simulation can be connected to a directly executing application—an
actual workload. The following section provides details on how large networks and simulations
on them are visualized. The actual design and implementation of the low- and medium-fidelity
network simulations follows. Finally, we outline our preliminary work involving the statistical
characterization of workloads.

1.1 Motivation

The magnitude of the scientific computations targeted by the ASCI project requires as-yet un-
available computational power. To facilitate these computations ASCI plans to deploy massive
computing platforms, possibly consisting of tens of thousands of processors, capable of achieving
10-100 teraOPS. For various reasons the current approach to building a yet-larger supercomputer—
connecting commercially available SMPs with a network—may be reaching practical limits.

The path to better hardware design and lower development costs involves performance evalua-
tion, analysis, and modeling of parallel applications and architectures, and in particular predictive
capability. Performance studies are routinely used to select the best architecture or platform for
a given application, select the best algorithm for solving a particular problem, and to study scal-
ability with respect to problem and platform size. Evaluating and analyzing the performance is
challenging primarily because of the large number of components making up such systems and the
complex interactions that occur between them.

The tools of the trade in performance modeling and analysis are typically categorized as al-
gorithmic/analytical analysis, statistical analysis, analysis with queuing theory, and simulation.
Depending on the problem, one or more or these methods will be more appropriate than others.
Although significant results have been obtained in recent work for an important class of applications
of interest to ASCI [1, 2], analytical modeling of systems and applications of this scale is not always
possible. Queuing models generally lead to very complex nonlinear equations whose solution is
intractable. For systems of ASCI-proposed size and complexity simulation remains the predictive
tool of choice, though simulation may be augmented by analytical and statistical analysis.

Three related targets for our simulation effort have been identified: simulation of ASClI-scale
parallel systems using a realistic ASCI workload, simulation of ASClI-scale storage systems and
I/0, and simulation of the high-performance ASCI wide-area network. All of these aspects of
ASCI system design are equally important and tractable by the approach we propose. However,
given the scale of the effort required, we envision a staged approach to tackling these problems.

In conjunction with the other methodologies, the proposed simulation environment could be
used for

e exploration of hardware/architecture design space;

e exploration of algorithm/implementation space both at the application level (e.g. data distri-
bution and communication) and the system level (e.g. scheduling, routing, and load balanc-

ing);

e determining how application performance will scale with the number of processors or other
components;

e analysis of the tradeoffs between performance and cost;

e testing and validating analytical models of computation and communication such as LogGP
[3] and BSP [4].

A canon of the field of performance evaluation is that hardware and software performance are
inextricable—hardware performance is meaningful only in the context of applications—thus these
capabilities are not entirely independent.

1.2 Goals

The a la carte project seeks to develop a simulation-based analysis tool for evaluating massively-
parallel computing platforms including current and future ASClI-scale systems. Such a tool would
provide a means to analyze and optimize the current systems and applications as well as influence
the design and development of next-generation high-performance computers. Hence our general
goal is to design and implement a simulation framework for design and analysis of extreme-scale
parallel and distributed computing systems, and as an ongoing part of this process to validate the
accuracy of results characterized by any particular model. An intermediate goal is to model (and
validate the model of) the ASCI Q machine [5] with a realistic ASCI workload.

We take as given that it is not feasible to simulate an extreme scale machine and workload with
perfect fidelity; on the other hand in certain circumstances it may be desirable to simulate some
subset of such a machine with near-perfect fidelity. In any case the simulator itself should be able
to exploit a machine of arbitrary size. Once defined, representations of logical components (e.g.
processors or SMPs, network switches and interconnects, programs or workloads, etc.) should be
easily assembled into differing configurations. Portability is essential. In more detail, the simulation
system should

e be scalable to model systems comprising 10,000 processors or more;

e allow arbitrary sets of components to be represented with arbitrary degrees of fidelity, in
terms of both structure (e.g. comprising distinct subcomponents) and timing;

e allow arbitrary (meaningful) configuration of components;

e allow description of the machine configuration to be as independent as possible of the de-
scriptions of the components;

e be genuinely portable across platforms ranging from single-processor workstations to clusters
of SMPs;

e be able to interface to other distinct applications such as direct execution simulators and
visualization systems.

N
e~ ~

{ architecture)

(_ design

. AT q . 5
toolkit of < TN mixed-fidelity
components modeling
,»\/~\1/"\\\ =T "\\\
4 . 4 . .
{ cost-benefit { validating ?
 analysis *\ , C models
S y\ o7 discrete- L-In o
~__-"—- =~ PR DN
. N _event { protocol)
\ algorithm . simulation .

P 4

B «_ development®

 exploration \ N 2 o
s N S _ -

extreme >
scale p—

-
——y ~

visualization

P hintd N

’ g 5 \
L application .

(_ tuning

- A -7
——__ -

Figure 1: Goals and applications of the a la carte project: The boxes represent the project goals
and the “clouds” represent applications for the simulation and analysis tool.

Figure 1 graphically illustrates these goals and the applications they support. These require-
ments suggest factoring the simulator into three parts: component descriptions, configuration de-
scriptions, and an underlying, reasonably generic, and reasonably light-weight simulation system
with which all porting issues are associated. An object-oriented approach facilitates these goals.

It is clear that simulating systems of the size and complexity that we envision will require the
use of parallel simulation [6]. Furthermore, the parallel simulation substrate must support compo-
sition of simulations and be very efficient in its implementation. We concluded that a conservative
synchronization scheme would have the best chance of success for this application. The require-
ment of portability across a variety of platforms led us to a parallel simulation substrate that runs
on both shared memory and distributed memory machines. The Scalable Simulation Framework
(SSF) [7] and the implementation of this framework being developed at Dartmouth College, DaSSF
[8, 9], is our current choice.

1.3 Approach

Our basic approach relies on an iterative development process for constructing components of appro-
priate fidelities and integrating them into a portable and efficient parallel discrete-event simulation
that is scalable to thousands of (simulated) computational nodes. Components may be processors,
switches, network interfaces, or application workloads, for example. Studies of hardware archi-
tectures are made by running our simulation for a particular aggregate system composed of these
components. The output of the simulation captures the behavior and performance of the compo-
nents, and may be visualized using techniques discussed in a later section. Figure 2 illustrates the
architecture of our simulator.

Simulating systems of the size and complexity we envision requires efficient parallel simulation.
We use a portable, conservative synchronization engine (DaSSF'), developed by Dartmouth College,
for the handling of discrete events [7, 9]. DaSSF manages the synchronization, scheduling, and
delivery of events in the simulation; it has a lean C++ API and supports both shared-memory and
distributed-memory parallelism. We use the Domain Modeling Language (DML) to specify the

simulation output visualization
it summery
collection statistics
application computational network
workload node
statistical
models CPU
airoct .
execution
DaSSF parallel discrete-event
simulation engine

’ DML specification for scenario ‘

Figure 2: The architecture of the a la carte simulator: Simulation scenarios are represented using
DML (Domain Modeling Language) and managed by the DaSSF simulation engine [9]. The appli-
cation workloads, computational nodes, and networks are represented by software components that
are assembled and connected according to the particular scenario being simulated. The results of
the simulation may be studied visually, statistically, or in detail.

architecture and workload to be simulated. DML allows one to easily construct libraries of reusable
component specifications. The lower two levels of the architecture in Figure 2 comprise DML and
DaSSF.

Our component-based design (represented by the middle layer in Figure 2) allows for the seam-
less assembly of architectures from representations of workloads, processors, network interfaces,
switches, etc., with disparate resolutions, into an integrated simulation model. One can mix and
match components of different fidelities to construct a model with the appropriate level of detail
for a particular study. We are focusing on the development of a simulation capability that scales
to tens of thousands of processors and that can execute on a wide variety of computing platforms.

The representation of application workload (shown on the left side of the middle layer in Fig-
ure 2) forms an especially important part of the simulation. Applications and computational
workloads may be represented at a variety of fidelities. Each approach below addresses tradeoffs
between the accuracy of the model and the computing resources required for the model: simple
random processes can load the hardware with message traffic having specified statistical proper-
ties. These match the distribution of messages in a real application and can include temporal
and spatial correlations between messages. They ignore some of the data dependencies, however.
Direct-ezecution techniques allow one to run programs nearly exactly on real processors coupled
to a simulated network. These are faithful to the actual timing of an application on a processor,
but may be very computationally intensive and slow. From time series of fine-grained simulations
we are using learning algorithms to construct reduced models of the full system dynamics. This
involves regression techniques like neural networks or dimension reduction methods such as the
Karhunen-Loeve expansion.

The collection of simulation output (at the upper-left in Figure 2) is vitally important for
understanding the behavior and performance of the simulated system. Our approach is to permit

the collection of information on all events (message sends, packetization, switching, etc.) present
in the simulation at the highest level of detail. Because of the potentially voluminous nature of
such data, we allow for filtering capabilities so that only data of interest will be collected in a given
study. Statistical summaries also provide concise views of system performance and behavior. We
are also pursuing visualization of these simulations (at the upper-right in Figure 2). We focus on
both visualizing the execution of the simulation and on visualizing the performance of the simulated
system.

The initial a la carte implementation comprises low- and medium-fidelity models of a network
and a low-fidelity model of workload, but it scales to at least 4096 computational nodes in a fat-tree
network. This implementation supports studies of simulation performance and scaling, and also
the properties of the simulated systems themselves. Ongoing work in our iterative development
approach aims to improve the fidelity of the representations and protocols. Future work will
emphasize validation, the representation of I/O and storage, and wide-area networking.

2 Evaluation of DaSSF for Use in Parallel Architecture Simulation

Dartmouth SSF (DaSSF) [13, 8, 19, 9, 21] is a C++ implementation of the Scalable Simulation
Framework (SSF) [8, 7]. We have completed an evaluation of DaSSF for use as the underlying
parallel discrete-event-handling substrate for the a la carte project. Identifying a high-performance
and scalable discrete-event handling mechanism is critical for the project’s success. While there
may be other parallel simulation frameworks that could also meet our needs, we have focused on
DaSSF and this section presents our evaluation of its suitability for our project.

2.1 Characterization of DaSSF

DaSSF is a parallel discrete event simulator that uses conservative simulation protocols to synchro-
nize execution on multiple processors. It is the only SSF implementation that runs on both shared
memory and distributed memory processors or a combination thereof. The distributed memory
implementation uses MPI for communication between processors.

DaSSF is intended to be a high-performance and scalable simulator [9]. It achieves this in part
by using a custom threading mechanism that handles memory very efficiently. This leads to the
requirement to annotate the source code in particular ways to support the implementation of the
thread behavior.

The SSF API provides five base classes that applications may subclass. The SSF_Entity class
defines the entities in the simulation and maintains their state information. The SSF_Process class
defines the behaviors that entities possess. Entities are connected to each other via channels, an
SSF_OutChannel in the transmitting entity and an SSF_InChannel in the receiving entity. An SSF_Event
represents the information that flows between entities across the channels. Additionally, DaSSF
enhances SSF by providing classes for random number generation, data collection, and simple
statistics, and for modeling semaphores, timers, and direct event scheduling.

DaSSF models may be constructed from scripts written in the Domain Modeling Language
(DML). A DML script is a recursively defined list of attributes which are key-value pairs. Special
keywords are included to simplify model construction by supporting the object-oriented concepts
of composition and inheritance. Parsing methods are provided, but the semantic interpretation
of the attributes is left to the application. The use of DML is not required; models may also be
constructed programmatically from the main function.

DaSSF is available for a variety of platforms including the SGI Origin 2000 cluster, the Compaq
AlphaServer cluster, SUN Enterprise systems, clusters of Linux workstations, and more.

2.2 Evaluation Strategy

To determine the suitability of DaSSF as a parallel simulation substrate, a small prototype model
was built. The purpose was to allow us to become familiar with DaSSF and to gain experience in
constructing models. The prototype was to be a learning experience and feasibility study rather
than the basis for conducting a specific simulation study. The prototype that was implemented is
described in more detail in Section 5.

Our requirements for the prototype were that it exercise all the essential components of DaSSF
and several of the DaSSF extensions to SSF. A small model that used all the features was desirable
for rapid development. At the same time we were also interested in the scaling properties of DaSSF
since we want to develop very large models in the future. We were not concerned with modeling
our components with high fidelity, but rather with determining whether DaSSF was an appropriate
substrate for developing components with arbitrary levels of fidelity and whether these components
could be easily configured into arbitrarily large models.

We were also interested in the capability of integrating DaSSF with our own C++4 classes as well
as with standard components such as the Standard Template Library (STL). The data collection
capabilities provided by DaSSF were another topic to be investigated. The ease of debugging
simulations that use DaSSF was also to be evaluated.

DaSSF is provided for several platforms and may be compiled with the native compilers or with
GNU g++. We tested our model on a variety of platforms using native compilers and vendor-
optimized versions of MPI.

2.3 Using DaSSF
2.3.1 Design Limitations

A concept that is important in conservative synchronization methods is that of lookahead. If the
earliest time that a logical process at time 7" can schedule an event for any other logical process is
at time T+ L, then L is known as the lookahead for the first process.

A DaSSF timeline (another name for a logical process) is a submodel that may run concurrently
with other submodels [19]. Entities are assigned to timelines, and entities on the same timeline are
said to be coaligned. Each timeline maintains its own event list from which events are processed in
non-decreasing time-stamp order. Entities on different timelines communicate exclusively through
messages passed over channels. Entities on the same timeline also communicate via messages
but may additionally use other mechanisms. In DaSSF having a substantial lookahead is more
important across timelines than within a timeline. Assignment of entities to timelines is the user’s
responsibility, and may have a large effect on simulation performance especially when the latencies
on the channels (lookaheads) differ greatly.

A simple example will illustrate how the assignment of entities to timelines affects performance.
Consider four entities A, B, C and D. A is connected to B, B is connected to C, and C is connected
to D. The (simulated) latencies of the connections between A and B and between C and D are
much longer than the latency between B and C. In this example A and D send messages to each
other with an average delay between messages of 10% nanoseconds and with no more messages sent
after 107 ns. The simulation ended at 10% ns which was sufficient for all messages to reach their
destination. Table 1 presents the results for one timeline (all entities on the same timeline), two
timelines (A and B share a timeline and C and D share a timeline), three timelines (B and C share
a timeline), and four timelines (each entity on its own timeline). The table includes the runtime
in seconds and the number of DaSSF timeline context switches. The runs were made on a single
processor Solaris workstation.

wall timeline
timelines secs switches

1 0.055 4
2 40.4 11661158
3 0.36 75030
4 42.3 12015316

Table 1: Example of effect of number of timelines on DaSSF performance.

end wall timeline

timelines time secs switches
1 10® 0.055 4

10° 0.055 4

109 0.056 4

108 0.36 75030
10° 3.08 754455
1010 29.72 7347995
10t 390.88 75000030

W W W wH— =

Table 2: Example illustrating that timeline synchronization occurs even in the absence of events.

DaSSF timelines synchronize with each other using a global synchronous barrier mechanism.
This synchronization occurs until the end of the simulation even when the event lists of all timelines
are empty. This effect may be seen in Table 2 which reports results for the same example described
above, but this time for one and three timelines and increasingly longer simulation times. Note again
that all messages were completed prior to time 108 ns. For a single timeline the runtime remains
the same regardless of when the simulation ends, while the runtime increases with increasing end
time using multiple timelines.

In DaSSF the behavior of an entity is defined in one or more SSF_Process instances. A process
that contains computations interspersed with DaSSF wait statements which are used to advance
simulation time is called a procedure. DaSSF supports two types of procedures, simple procedures
and procedures which are not restricted. The execution path of a simple procedure must end with
a wait statement. Such procedures are desirable because they are implemented more efficiently in
DaSSF.

The requirements for annotating the source code are not too cumbersome, but do have to be
meticulously observed because DaSSF contains little error checking in this area. The DaSSF User’s
Manual [9] describes the annotations, lists some limitations that derive from how the source code
is parsed by the translator, and also warns of the importance of appropriately declaring SSF STATE
variables.

DaSSF provides and manages an output collection mechanism that records output from entities
distributed among any number of processors. Each processor has a single output file to which
output is dumped in binary format. The dumpData function is a part of every SSF_Entity, which
implies that output may only be written by existing entities. The user is permitted to define a
global wrapup function which is called just before the simulation terminates. In this function one
may retrieve the data from the multiple output files in time stamp order and organize and print it
as desired. When the simulation terminates prematurely, such as due to an error, the data collected
thus far is not post-processed by the wrapup function. This is unfortunate as the partial data could
be a valuable clue to the location and cause of the abort.

The DaSSF extensions to SSF make modeling easier and we are using them despite the fact
that this makes our models non-portable to other SSF implementations. Semaphores are more
convenient than internal channels for signaling between processes of the same entity or coaligned
entities. Timers provide a way to schedule a future action that can be cancelled at a later time if it
is no longer desired. This is helpful because an SSF_Event cannot be canceled once it has been placed
on the event list. DaSSF normally provides a process-oriented simulation world view, but it has
functions that provide a discrete-event world view for situations where the extra performance gains
outweigh the convenience of process-oriented simulation. We have successfully used semaphores
and timers in our models. We are also using the DaSSF random number generation capabilities.

Most of the DaSSF constructs are implemented for distributed memory as well as shared memory
architectures. However, two recently added features, user barrier synchronization and appointment
channels, are only available for shared memory. Processes that coordinate through a semaphore
must belong to entities that are coaligned in the same timeline, so these entities cannot be on
distributed processors.

2.3.2 Model Building

DaSSF models may be constructed from DML files or programmatically. When DML scripts are
used, the model topology is defined in the model DML file. Properties of model components, the
number to be instantiated, and their connectivity are specified in this file. The machine DML file
describes the hardware platform that the simulation will run on. The runtime DML file contains
runtime information such as simulation start and end times and the names of the other DML files.
DaSSF provides a partitioner that constructs the simulation components from the topology in the
model DML file and assigns these components to the parallel computing platform.

The use of DML is not required. Models may be constructed programmatically from the main
function. Thus far we have not experimented with this means for constructing models.

We have begun investigating the possible use of hardware description languages to formally
specify architectural configurations. This will facilitate the quick assembly of architectures for case
studies where an appropriate DML input file might be cumbersome to construct.

2.3.3 Portability

We regularly build DaSSF and run small simulations on a single processor Solaris workstation. We
usually use the g++ compiler, but the SUNpro compiler also works fine. Any problems encountered
on this most basic platform often also occur on the more sophisticated platforms, too. The only
lasting difficulty we have with this platform is mentioned below where we discuss debugging issues.

Building DaSSF and running simulations on our SGI Origin 2000/IRIX cluster is often more
complex than on other platforms. This occurs in part because, unlike at Dartmouth, we must
interact with the cluster via the Load Sharing Facility (LSF). We prefer to use the native MIPSpro
compiler and MPI implementation for better performance and local support, and after numerous
attempts have a combination of options that is consistent with features required by DaSSF. We
have successfully run our simple statistical models on multiple processors on multiple boxes, and
we have also run a short direct execution model (described later) on this platform. A problem
that remains unresolved at this time is that when a model finishes it sometimes does not properly
interact with LSF to terminate the job, but rather continues to run until the LSF time limit is
exceeded.

We were unable to successfully compile and run our simulation on Alpha clusters running the
Tru64 operating system. Numerous problems were found using the compilers (both the native com-

pilers and various versions of g++) and libraries on these machines. Problems include segmentation
faults in the compiler, name space clashes between DaSSF and the standard libraries, and failure
of ISO standards-compliant C4++ code to compile.

Our experience on workstations and clusters running Linux was much better. We generally had
no problems compiling, linking, or running on Linux-based systems.

2.3.4 Robustness

Early on we encountered several problems in trying to use DaSSF for our prototype, but the DaSSF
developer was quite responsive in addressing our questions and fixing bugs that we uncovered. We
were initially unable to use DaSSF and the STL together; this has been corrected. Our early model
exhibited a lot of memory leaks. This was in part due to lack of clarity in the DaSSF manual
regarding which objects DaSSF automatically destroys and which are the responsibility of the user.
After eliminating those leaks, we believe the DML parser still contains memory leaks. We found
that DaSSF works handily with sub-directories and namespaces, except that file names and event
class names must be globally unique.

There have been two major releases of DaSSF within the past year and seven bug fix releases.
The documentation has been kept current with the software.

2.3.5 Debugging

We are able to debug our models using gdb on Linux machines, but have not fully succeeded in using
gdb with DaSSF on Solaris where the technique that one uses to display variables on Linux does
not work. Debugging is generally more cumbersome because the source-to-source translation that
is needed to support the threading mechanism modifies the code and variable names. Reference to
the translated code rather than the original source code is often required in order to understand
the debug information.

2.3.6 Scalability

We are able to simulate 4096-node clusters using computing platforms such as the SGI Origin
2000; peak memory usage was about 8 GB in our initial prototype. Table 3 shows some of the
performance figures we have obtained for a 64-node cluster. Note that performance degrades as
the number of computational nodes increases because the processing nodes are not performing
computational work; essentially only message passing is taking place. Simulations involving the
direct execution of actual applications will have a high proportion of their CPU time spent on the
workload representation, and hence will exhibit more favorable scaling characteristics.

We have also investigated how the simulation scales as a function of problem size. Figure 3
illustrates the fairly linear scaling in terms of compute time and peak memory usage for simulations
of fat-trees with 8, 64, 216, 512, and 1000 computational nodes. Since the simulations were all run on
a single CPU, the scaling behavior does not include contributions from additional communications
overhead as would be the case if multiple CPUs were used for the larger cases. Note that the
“CFD” and “uniform” workloads have similar run times, but the latter uses more memory because
messages tend to queue up at the network interface cards since the network bandwidth is not
sufficient to handle the demand.

The memory usage measurements discussed so far in this section were made using DaSSF
prior to its version 3.2. For version 3.2, memory allocators were rewritten to avoid fragmentation.
Preliminary indications are that the simulation runs described above would require only about half
of the memory if version 3.2 were used. We have also noticed that the DaSSF model partitioner

10

Platform Computational Events Execution
Nodes (1/sec) Time (sec)

Linux, 733 MHz Pentium III 1 2020.2 178.1
2 689.9 521.6

Linux, 500 MHz Pentium III 4 494.3 728.0
8 379.9 947.3

Solaris, Sun SPARC Ultra 5 1 1105.1 325.6
Irix, Origin 2000 1 1298.3 277.2
4 1351.1 266.4

16 630.2 571.1

Table 3: Performance of the initial prototype simulating at 64-node architecture on a variety of computing
platforms.

3000 1 ° ch ° 2000 | ° ch
A uni o N uni A
3 ‘ =
) 1500 1
52000 g
= £ .
i~ %1000 N
D
%1000 S
o S 500 . i
[]
0™+ ‘ ‘ ‘ ‘ 0 ~*— ‘ ‘ ‘ ‘
0 200 400 600 800 1000 0 200 400 600 800 1000
Computational Nodes Computational Nodes

Figure 3: Scaling behavior of a fat-tree simulation on single 1 GHz Pentium III hardware running
Linux: the horizontal axes are the number of computational nodes in the simulation and the vertical
axes are (left) the amount of CPU time required to complete a 50 microsecond simulation with
heavy message traffic and (right) the peak memory used by the simulation. The filled-in circles
show results for a “CFD” workload and the hollow triangles show results for a “uniform” workload
(see page 27).

11

tends to use disproportionately large amounts of memory if presented with a large DML input file:
a DML input file containing the routing table for a 4096-node fat tree required about 10 GB of
memory to partition the model.

2.4 Competing Simulation Frameworks

Although we have focused on DaSSF as our simulation substrate, we try to remain aware of other
parallel discrete event simulation (PDES) environments that may be used for computer architecture
simulation. A good overview of the PDES field was recently published [6]: references [27] and [20]
contain surveys of languages and libraries for PDES.

SSFNet is a collection of Java SSF-based components for modeling and simulation of Internet
protocols at and above the IP packet level of detail [7]. SSFNet is available in source form under
the GNU public license, but it requires a Java SSF simulation kernel in order to run. A commercial
implementation of Java SSF is available from Renesys Corp., and a license for research purposes
is also available [7]. While we could not use SSFNet directly because it is written in Java, the
common API between SSFNet and DaSSF may allow us to leverage our work with it when we
reach the project stage of simulating the ASCI wide-area network.

The Wisconsin Wind Tunnel II [26], is a conservative synchronization parallel architecture
simulator that utilizes direct execution to simulate multiprocessors with in-order processors and
a simulated memory system. It is limited to the Sparc V8 instruction set. It appears that this
simulator is no longer undergoing active development.

Researchers at UCLA have developed the Parsec language [11], and the COMPASS simulator
for performance prediction of MPI programs. Parsec is a C-based parallel simulation language that
supports both conservative and optimistic synchronization approaches. MPI-SIM [12], a component
of COMPASS, is a library for the direct-execution driven simulation of MPI programs.