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The calculation of the electrical conductivity of a high temperature QED plasma
from first principles of QED is outlined. The principal feature is a non-trivial
resummation of perturbation theory beyond hard thermal loops and truncation
of the Schwinger-Dyson hierarchy including multiple scattering effects, consistent
with gauge invariance.

Finite temperature quantum field theory has been well-studied in the past
two decades in the imaginary time Matsubara formalism!-2. The imaginary
time formalism is well suited for equilibrium thermodynamic quantities such
as the free energy and pressure. More recently the real time-dependent non-
equilibrium behavior of field theories has come to be investigated as well.
These initial studies have been restricted to large N, or Hartree approxima-
tions for the most part. Such Gaussian approximations treat only the two-
point function of the field theory or single particle distribution function in
interaction with a time-dependent mean field, and ignore completely the di-
rect scattering between the field quanta. The consistent inclusion of scattering
processes in a practical real time formalism remains the principal challenge
for future progress in non-equilibrium field theory.

The essential difficulty is that scattering requires higher connected Green’s
functions in the Schwinger-Dyson (SD) hierarchy of the field theory and it is
not clear a priori how the infinite SD hierarchy should be truncated in a way
that is both tractable and consistent with general principles of symmetry and
renormalizability. Certainly simple perturbative expansion is not adequate,
since the long time behavior of higher point Green’s functions is generally
non-perturbative. In fact, the most natural attempts to extend the large N
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expansion beyond the leading order lead to secular instability in the Green’s
functions which is clearly unphysical. At the very least, scattering and self-
energy effects must be resummed into the denominators of the two-point func-
tion to avoid such secular instabilities. This resummation problem problem
becomes particularly acute in gauge theories where the Ward identities of the
exact theory must be maintained in any resummation scheme.

The simplest and best understood gauge theory is electrodynamics, and
the simplest non-equilibrium process is linear response, i.e. the small distur-
bance of the system and its relaxation back to equilibrium. If there is any
non-equilibrium situation that should be under full theoretical control it is
the linear response of a weakly coupled, infrared stable QED plasma. Con-
versely, if we cannot develop consistent theoretical methods which can handle
this case, it is certain that non-Abelian plasmas far from equilibrium will re-
main completely beyond our abilities. It is remarkable that an apparently
straightforward question like the calculation of the electrical conductivity of
a relativistic QED ete™ plasma from first principles of the QED Lagrangian
remains incompletely understood a half century after the consistent renor-
malizablity of QED was demonstrated. The reason of course is that one must
confront the hierarchy and resummation problem in order to incorporate the
scattering processes responsible for relaxation to thermal equilibrium and cal-
culate the transport coefficients. In many-body theory it has long been rec-
ognized that extracting the hydrodynamic limit from microscopic degrees of
freedom is highly non-trivial, even when those degrees of freedom are weakly
coupled. The exact method by which irreversible behavior of collective modes
emerges from fully reversible microscopic processes seems to depend on the
details of the models considered and the approximations used. In addition,
the technical issues of renormalizability and gauge invariance, typical of quan-
tum field theory and not encountered in most many-body problems. Finally,
the linear response theory of a QED plasma is already interesting in its own
right, for comparison with known results for non-relativistic heterogeneous
plasmas and for astrophysical applications. For example, the conductivity of
the QED plasma is of vital importance to the understanding of the evolution
of soft magnetic and electrical fields in the early universe.

With this set of motivations I will describe the background and recent
progress on the first principles calculation of the electrical conductivity of a
relativistic QED plasma. After outlining the general method of dealing with
the SD hierarchy and gauge invariance, I will specialize to the ultra-relativistic
case T' > m in order to extract analytic results which may be compared to
other approaches. The work reported here is still in progress and a much more
complete presentation of the results of our approach is now in preparation.
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Consider first a very simple classical scattering model of electrical con-
ductivity, due to Drude about a century ago. Let a medium consisting of
essentially free charge carriers with mass m and charge e be subjected to an
external electric field E. Initially, the particles will be accelerated with

e =
a=—F. 1
- M
This acceleration is fully time reversible. Irreversibility enters by the explicit
assumption that the particles scatter in a typical collisional time 7., after
which they ‘forget’ their past acceleration. Then the average velocity of the
charged particles in the medium is
€T, =

() =dre=-—"E. (2)

If the number density of free charge carriers is n then the average electrical
current in the medium is

(7) = en(0) = E, 3)

which is linear in E. The coefficient of proportionality is the electrical con-
ductivity,

e’nr,

= 4
opcC m 3 ( )

where the subscript DC denotes the zero frequency, direct current limit.

This simple model already shows two essential features of a more complete
approach. First, the transport coefficient is proportional to the collisional time
scale 7.. In the absence of collisions, 7, and therefore op¢ diverges, no matter
how small the coupling e? is assumed. In field theory the effect of multiple
collisions is contained in the imaginary parts of self-energies which must be
computed accurately. Secondly, the conductivity is inversely proportional
to the inertia of the charge carriers, m. This means that one must have
a quasi-particle interpretation of the charge carriers with a well-defined real
part of their self-energy. In other words, weak coupling implies that a narrow-
width approximation to the spectral density of the charge carriers should be
applicable. For an ultra-relativistic plasma the average inertia of these charge
carriers is replaced by the temperature 7', and the number density n oc T3.
Hence the main issue is: what is 7. and how is it to be computed in a self-
consistent narrow-width approximation?

Naively one would expect this collisional time scale to be given by
(nose)~! where o, is the two-particle scattering cross section obtained by
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the one-photon exchange diagram. Dimensionally the square of this dia-
gram is proportional to a?/T?. Thus one would expect 7.  (a?T)~! and
opc x o 'T. An analysis of the conductivity through the Boltzmann equa-
tion 4% suggests that opc o (aloga)™'T, with the additional logarithm of
the coupling coming about because of a logarithmic infrared divergence for
small angle Coulomb scattering in the transport cross section, even when the
finite range of the Coulomb interaction due to Debye screening effects in the
plasma are taken into account. This residual sensitivity to small angle scatter-
ing and the appearance of logarithms of the coupling show the characteristic
sensitivity of transport processes to soft physics and a ratio of hard to soft
scales in the argument of the logarithm, in this case the Debye scale eT' com-
pared to the charge particle damping rate €27 (up to additional logarithms
which may be ignored to leading log order). Our principal interest will be in
checking these estimates and the appearance of these scales in the microscopic
equations of QED.

The starting point for the computation of the conductivity in QED is the
linear response formula of Green-Kubo. The average current in an external
potential can be expressed in the form,

(Ju(@)) = —ie’Tr [,G (@, z; A)] (5)

where G(z, z'; A) is the full fermion propagator in the external A,. By varying
this expression with respect to A, (z') and keeping only the term linear in the
perturbing potential we obtain

5ju(x)) = - / 42/ T (2, 2')SAY (o) (6)

The real time polarization tensor Hﬁf; (z,x'") is given by

I (2, 2') = ie? / dzd2"Tr {(Vu)ed:aGaa (7, 2)(Tw)arerp(2, 25 2") Gere (2", 2) } (7)

The (ab) indices are real time indices of the 2 x 2 CTP formalism. The
retarded polarization tensor IIg ,, is proportional to the sum of the (11) and
(12) components of this 2 x 2 matrix. Expanding the real time sums over the
repeated CTP indices on the right side gives three non-trivial terms involving
the products GrGr, GaGa and GrGa respectively, where R and A denote
retarded and advanced Greens’s functions. The non-trivial vertex function,

(Fu)ab;c(-'ll',y;z) = % (8)
7

necessarily arises from the linear variation whenever G is non-trivial. Its
apparently 2% = 8 independent real time components can be shown to reduce
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to three independent (complex) components which appear in the three terms
of IIg. We remark also that the vertex function defined by this variation of
the Green’s function (8) is essential to demonstrating the conservation of the
current and polarization operator.

Since the polarization operator is evaluated in zero external potential for
linear response, it has all the symmetries of the unperturbed equilibrium state,
which spacetime translationally invariant as well as rotationally invariant.
Hence we can introduce the usual Fourier transform in space and (real) time.
At finite temperature the invariances plus the conservation law obeyed by II,,,,
imply that it can be decomposed into a transverse and longitudinal part,

H;u/(w; E) = Pg;/(w; E)HT(wa k) + P;{Ju(w; E)HL (wa k) . (9)

The conductivity is defined as the time-irreversible (dissipative) response to

a homogeneous and time-varying electric field, which is determined by the

imaginary part of longitudinal polarization. The DC conductivity is then
ImIl;, (w, k = 0)

ope = g (10)

Up until this point all formulas are completely general and exact.

It is this extreme infrared limit that makes the evaluation of the conduc-
tivity non-trivial in practice. For example if the bare vertex v, is substituted
for the exact vertex I',, in (7), with either the bare or hard thermal loop
Green’s function used for G, one quickly finds that the polarization tensor
has a kinematic threshold, or cut starting at non-zero w. Hence the value
of the limit indicated in (10) is zero in this approximation. However, if one
tries to add to this simple picture any finite number of self-energy insertions
or photon line exchanges one encounters infrared divergences in the quantity
opc arising from the so-called ‘pinching pole’ singularities of the real time
formalism. These arise from the mixed GrGa terms in (7), since by causal-
ity their poles in the complex frequency plane are on opposite sides of the
real axis. In the narrow-width approximation we are interested in because of
weak coupling a < 1, these pole singularities approach the real contour of
integration from opposite sides and lead to a divergent result in the limit of
zero fermion damping width.

Hence the imaginary part of the self energy of the eTe™ fermions, ¥
is essential to the problem and regulates the infrared divergences. This is
consistent with our general classical considerations in the Drude model at the
outset. This finite self-energy (for finite o) must appear in the propagator,
which means that it adds to the inverse propagator,

Gop (P) = Gy (P) + Zap(P) (11)
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where G=!(P) = iy, P* is the bare inverse propagator. From (8) this imme-
diately implies that the vertex must be non-trivial. In order not to bring in
the infinite hierarchy of higher point Green’s functions we must make some
approximation to X that does not involve the vertex itself. The simplest possi-
bility of using the bare Green’s function G in ¥ turns out not to work because
there are still pinching poles in the final expression for opc. The physical rea-
son for this divergence is that G, not G describes the physical quasi-particles,
dressed by their multiple interactions with the plasma. Hence we must use
the self-consistent quasi-particle approximation,

4
SlP) =i [ G (Mo (P + Qe (D)o@, (12

where only the bare vertices having non-vanishing CTP components
(7*)11;0 = —(7")22;2 appear.

For the photon Green’s function D, we must incorporate the effects of
Debye screening or the long range Coulomb interaction will lead to infrared
divergences in the scattering cross section and o pc. However, in the definition
of this ‘internal’ polarization for defining D,,, the question arises if one should
use the dressed Green’s function G or the bare one G. Although G would seem
to be the safer ‘more correct’ choice, it is easy to see that the Ward identity,

Q"D (Q) =0 (13)

is violated unless one also used a non-trivial vertex I', in the definition of
D;,,l, which would then enter the self-energy and hence the variation of G!
would involve the variation of this vertex and higher point functions of the
Schwinger-Dyson hierarchy. The only way to avoid this infinite regression
without violating Ward identities is to define

- _ [ d'P
(Dw/)abl(Q) = (duu)abl (Q)_Z/ Wtr {('Yu)cd;aGdd’ (P+ Q)('Yu)d’C’;bGC’c(P)} 5
(14)
with (d) 7 (Q) = —(duw) 3 (Q) = 6,,Q% — @, Q. is the bare photon inverse
propagator.

The last equation we need is the variation of G~ with these approxima-
tions for the fermion and photon self-energies. Substituting (12) and (14) into
(11) and (8) gives the non-trivial integral equation for the vertex,

d4
(PP = K3 K) = ol =i [ Gertunabun (P= Q) %

T (P = QP+ Q; K) Gy (—Q — P)ypy. g (Dap)aa (Q), (15)
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corresponding to the resummation of the single dressed photon exchange,
similar to that which appears in the Bethe-Salpeter equation.

These equations summarize the minimal approximation to the Schwinger-
Dyson hierarchy that is necessary to control all the infrared divergences and
extract a finite DC conductivity from the Green-Kubo formula. The three
kinds of real time vertices which appear can be analyzed in the narrow-width
approximation and a semi-analytic result obtained in terms of a series of finite
temperature real-time integrations. A careful analysis of the self-energy shows
that due to a cancellation of the lowest order effects one must work slightly
harder to extract the leading non-zero order result for o pc and include also the
‘crossed double rainbow’ diagram in ¥ with a corresponding additional crossed
two-photon exchange diagram in I'. A detailed analysis of this additional set
of diagrams is now in progress. The comparison with the Boltzmann approach
to opc is also of some interest and will be presented in full elsewhere.
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