
�����������	
������
���	���������
�	����

NIC Series Volume 13 ISBN 3-00-009099-1

M
ul

tip
ar

ad
ig

m
 P

ro
gr

am
m

in
g

w
ith

 O
bj

ec
t-

O
rie

nt
ed

 L
an

gu
ag

es
J.

S
tr

ie
gn

itz
,K

.D
av

is
,Y

.S
m

ar
ag

da
ki

s

13

Deutsches
Elektronen-Synchrotron

Forschungszentrum Jülich
in der Helmholtz-Gemeinschaft

N
IC

Jörg Striegnitz, Kei Davis,
Yannis Smaragdakis (Eds.)

Multiparadigm
Programming with
Object-Oriented Languages

Central Institute for Applied Mathematics

Proceedings

Publication Series of the
John von Neumann Institute for Computing (NIC)

The John von Neumann Institute for Computing was established in 1998
by the Research Centre Jülich and the German Electron Synchrotron
Foundation DESY in order to support supercomputer-aided scientific and
engineering research and development in Germany with the following tasks:

• Nationwide provision of supercomputer capacity for projects in science,
research, and industry.

• Supercomputer-oriented research and development by research groups
of competence in supercomputing applications.

• Education and training in the fields of supercomputing by symposia,
workshops, summer schools, seminars, and courses.

Publication Series of the John von Neumann Institute for Computing (NIC)
NIC Series Volume 13

John von Neumann Institute for Computing (NIC)

Jörg Striegnitz, Kei Davis, Yannis Smaragdakis (Eds.)

Multiparadigm Programming with
Object-Oriented Languages
(MPOOL)

2nd International Workshop, 11 June 2002

Malaga, Spain

Proceedings

organized by

John von Neumann Institute for Computing

in cooperation with

Los Alamos National Laboratory, New Mexico, USA

Georgia Institute of Technology, Georgia, USA

NIC Series Volume 13

ISBN 3-00-009099-1

Die Deutsche Bibliothek – CIP-Cataloguing-in-Publication-Data
A catalogue record for this publication is available from Die
Deutsche Bibliothek.

Publisher: NIC-Directors
Distributor: NIC-Secretariat

Research Centre Jülich
52425 Jülich
Germany
Internet: www.fz-juelich.de/nic

Printer: Graphische Betriebe, Forschungszentrum Jülich

c© 2002 by John von Neumann Institute for Computing
Permission to make digital or hard copies of portions of this work
for personal or classroom use is granted provided that the copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise requires prior specific permission by the publisher
mentioned above.

NIC Series Volume 13
ISBN 3-00-009099-1

Preface

This volume contains the proceedings of the International Workshop on Multi-
paradigm Programming (MPOOL’02), held in Malaga, Spain on June 11, 2002.

Although the idea of combining programming paradigms and languages goes
back to the late sixties, when a lot of research effort was spent on the development
and investigation of extensible programming languages, this approach has lost
neither its importance, nor its elegance.

Programming languages and paradigms are thought models. Their distin-
guishing concepts have a great influence on how programmers approach the
different stages of the software development process. With respect to software
quality, it is therefore desirable to let the problem domain determine the choice of
the programming paradigm. Especially for larger software projects, this implies
the need for languages and tools that support the simultaneous use of different
programming paradigms.

Today the object oriented programming paradigm is dominant and ubiqui-
tously employed for design, implementation and even conceptualization and a
huge set of tools has been developed and successfully applied over the last two
decades. MPOOL tries to bring together people who are trying to build a bridge
from OO-centered tools to a toolset that permits free choice of paradigms.

Last year’s MPOOL gave evidence that there exists a larger community work-
ing in this emerging area. The extended diversity of topics of this year’s work-
shop shows that there is an ongoing advance in programming languages, tools,
concepts and methodologies to support multiparadigm programming.

One of the main goals of the workshop (and the reason of publishing this
proceedings volume) is to promote and expose work that combines programming
paradigms in the framework of OO languages. Building a consensus about the
standard background work, the interesting problems, and the future directions
is the way to form a community.

Acknowledgment. We wish to heartily thank all the authors for writing
very interesting papers and all the members of the Programme Committee for
their invaluable help in compiling the program.

June 2002 Kei Davis
Yannis Smaragdakis

Jörg Striegnitz

Workshop Organizers

Kei Davis, Los Alamos National Laboratories, New Mexico, USA
Yannis Smaragdakis, Georgia Institute of Technology, Georgia, USA
Jörg Striegnitz, John von Neumann Institute for Computing, Germany

Programme Committee

Gerald Baumgartner, Ohio State University, Ohio, USA
Kei Davis, Los Alamos National Laboratory, New Mexico, USA
Jaakko Järvi, Indiana University, Indiana, USA
Peter Van Roy, Universite catholique de Louvain, Belgium
Yannis Smaragdakis, Georgia Institute of Technology, Georgia, USA
Jörg Striegnitz, John von Neumann Institute for Computing, Germany

Table of Contents

Object Programming in a Rule-Based Language with Strategies 1
Hubert Dubois, Hélène Kirchner

Modelica - A Declarative Object Oriented Multi-Paradigm Language. 27
Peter Fritzson, Peter Bunus

The Return of Jensen’s Device . 45
Timothy A. Budd

Towards Linguistic Symbiosis of an Object-Oriented and a Logic Program-
ming Language . 65

Johan Brichau, Kris Gybels, Roel Wuyts

Replacing Refinement or Refining Replacement? . 79
Sibylle Schupp

Java-Style Variable Binding in C++ . 97
Thomas Becker

Dynamic Inheritance for a Prototype-based Language 109
Koji Kagawa

A case in Multiparadigm Programming : User Interfaces by means of
Declarative Meta Programming . 121

S. Goderis, W. De Meuter, J. Brichau

iv

Object Programming in a Rule-Based Language

with Strategies

Hubert Dubois, Hélène Kirchner

LORIA-Université Nancy 2 & LORIA-CNRS
BP 239

54506 Vandœuvre-lès-Nancy Cedex, France
{Hubert.Dubois|Helene.Kirchner}@loria.fr

Abstract. This paper presents a programming framework that com-
bines the concepts of objects, rules and strategies, built as an extension
of the rule-based language with strategies ELAN. This extension is imple-
mented in a reflective way in ELAN itself and relies on the same formal
semantics, namely the ρ-calculus.

1 Introduction

Object-based languages and rule-based languages have independently emerged
as programming paradigms in the eighties. Languages like Ada [Ros92], Smalltalk-
80 [GR83], Eiffel [Mey92] or Java [AG96] are well-known and largely used but
often lack of semantical basis. Rule-based systems, initially used in the artificial
intelligence community, have gained interest with the development of efficient
compilers.

The ELAN system [BCD+00] provides a very general approach to rule-based
programming. ELAN offers an environment for specifying and prototyping de-
duction systems in a language based on rewrite rules controlled by strategies. It
gives a natural and simple logical framework for the combination of computa-
tion and deduction paradigms. It supports the design of theorem provers, logic
programming languages, constraint solvers and decision procedures and offers a
modular framework for studying their combination. ELAN has a clear operational
semantics based on rewriting logic [BKKR01] and on rewriting calculus [Cir00].
Its implementation involves compiled matching and reduction techniques inte-
grating associative and commutative functions. Non deterministic computations
return several results whose enumeration is handled thanks to a few constructors
of choice strategies. A strategy language is available to control rewriting. Evalu-
ation of strategies and strategy application is again based on rewriting. However,
ELAN lack object oriented features, the notion of states, which provides more
structuration, and the ability to define structures sharing the same properties.

More recently, the combination of object-based languages and rule-based lan-
guages has proved to be quite relevant to formalize and solve advanced industrial
problems that require some form of reasoning. Among many other languages, let
us mention three of them, more closely related to our approach: CLAIRE [CL96],
Oz [HSW95] and Maude [CDE+00].

1

CLAIRE is combines objects and propagation rules in the logic programming
style for problem solving and combinatorial optimization. Single inheritance and
full polymorphism are supported. CLAIRE has been realized to deal with appli-
cations with complex data structures with the ability to define rules. CLAIRE
rules associate a logical condition with an expression composed by one or two
objects: when a condition is evaluated into true, the expression is evaluated for
the given objects. Conditions are events that denote an evolution of an entity
(creation of an object, modification of an attribute, etc...). Rules can be grouped
together but control is not explicit.

Oz is a concurrent object oriented constraint language that offers multiple
inheritance, higher-order functions and search combinators. The programming
language Oz integrates the paradigms of imperative, functional and concurrent
constraint programming in a computational framework. The integration of ob-
jects into the programming language is interesting because they have defined
a small Oz that can support objects for concurrent constraint programming.
Propagation rules are also used in the context of constraint solving.

Maude is a language based on rewriting logic, with several extensions, among
which Full Maude where object oriented modules can be defined. It offers the
possibility to develop concurrent object systems, or configurations, where the
current state has a multiset structure of objects and messages, and evolves by
application of rules that implement message calls.

Compared to these existing languages, extending ELAN with objects provides
several advantages. First of all, the fact that ELAN provides a strategy language
and strategy constructors to define control on rules, appears as essential for
many applications. Second, the main features that characterize object languages
(definition of classes composed of attributes and methods; simple inheritance;
method call on objects) can be defined in a reflective way, since the extension
is defined in ELAN itself. Finally our last, but maybe more important, point is
that the extension has a semantics compatible with the rewriting calculus and
is achieved by mapping the theory of objects into the ρ-calculus.

In Section 2, we first present the syntax of the object extension of ELAN,
including object modules and rules on objects. The encoding of objects and
classes into an algebraic theory is presented in Section 3. This provides the basis
for the reflective implementation of the extension in ELAN itself. Section 4 first
introduces the rewriting calculus on which the semantics of the object extension
is defined. The conclusion gives some further perspectives. An extensive example
is developed in Appendix.

2 The language extension

Adding object-oriented features to ELAN was motivated by the need of repre-
senting structured data and states and to combine them with rewrite rules and
strategies describing their evolution. In this section, after a short presentation of
the ELAN system, we define the object-oriented extension of ELAN that consists
in declaring special modules that we call OModules (OModule for Object Mod-

2

ule) where the user can define the classes that he uses. In each module, attributes
and methods are defined for each class; the syntax of these object modules is
quite similar to object languages like Smalltalk-80 [GR83] or OCaml [RV98].

2.1 ELAN

The starting point of this work was the ELAN system. We briefly present the
features of the language that are used in this paper and the reader can refer
to [BCD+00] for further details and examples. In order to have some additional
informations, the reader can refer to several articles and presentations of the
system1.

The language is close to the algebraic specification formalism with abstract
data types defined by operators and rewrite rules, but provides additional speci-
ficities that are worth emphasizing. Three main principles have guided the design
of the ELAN language.

– First, the language allows rules to be non-terminating and non-confluent,
but then their application has to be controlled. A distinction is made be-
tween unlabelled rules for computations, which are required to be confluent
and terminating, in order to give a unique result, and labelled rules for de-
ductions, for which no confluence nor termination is required.

– Rules and strategies are first-class objects in the language.

– Application of a rule or a strategy on a term may give zero, one, or several
results. This non-determinism related to the production of sets of results is
handled by backtracking.

Modules Following the algebraic languages tradition, ELAN is modular. A pro-
gram is a collection of hierarchically constructed modules together with a re-
quest, which is a term to be evaluated in this hierarchy. A module may import
already defined modules and this importation may be local (not visible outside
the module) or global (visible outside). A module also defines a set of sorts, a list
of operators with their types, several lists of rules, classified by the type of their
left and right-hand sides, and strategies, also defined by operators and rules.

Predefined modules exist in the ELAN library, such as bool, int, ident,
list[X]...

Confluent and terminating rules Conditional rewrite rules can be grouped
together according to the sort of their left (and right) hand side. For rewrite
systems with mutually exclusive conditions in rules, we have confluence and
terminating properties. An application of such set of rules on an initial term
produces a unique result.

1 See the Web site of ELAN: http://elan.loria.fr

3

Strategy language A strategy language is provided to express control and
derivation tree exploration. A few strategy constructors, similar to those for
tactics in proof assistants, are offered and efficiently implemented.

– A labelled rule is a primal strategy. Applying a rule labelled lab returns
in general a set of results. This primal strategy fails if the set of results is
empty.

– Two strategies can be concatenated by the symbol “;”, i.e. the second strat-
egy is applied on all results of the first one. S1 ; S2 denotes the sequential
composition of the two strategies. It fails if either S1 fails or S2 fails. Its
results are all results of S1 on which S2 is applied and gives some results.

– dk(S1, . . . , Sn) chooses all strategies given in the list of arguments and for
each of them returns all its results. This set of results may be empty, in
which case the strategy fails.

– first(S1, . . . , Sn) chooses in the list the first strategy Si that does not fail,
and returns all its results. This strategy may return more than one result,
or fails if all sub-strategies Si fail.

– first one(S1, . . . , Sn) chooses in the list the first strategy Si that does not
fail, and returns its first result. This strategy produces at most one result or
fails if all sub-strategies fail.

– The strategy id is the identity that does nothing but never fails.

– fail is the strategy that always fails.

– repeat*(S) applies repeatedly the strategy S until it fails and returns the
results of the last unfailing application. This strategy can never fail (zero
application of S is possible) and may return more than one result.

But the user may also design his own strategies. The easiest way to build a
strategy is to use the strategy constructors to build strategy terms and to de-
fine a new constant operator that denotes this (more or less complex) strategy
expression. This gives rise to a class of strategies called elementary strategies.
Elementary strategies are defined by unlabelled rules of the form [] S ⇒ strat,
where S is a constant strategy operator and strat a term built on predefined
strategy constructors and rule labels, but that does not involve S. The applica-
tion of a strategy S on a term t is denoted (S) t.

Rules with local variables and patterns Labelled rules and more generally
strategies are always applied at the top position of a term. In order to be able to
apply them inside expressions, a more general form of rule with local variables
allowing to apply strategies on subterms is allowed in ELAN.

One can also generalize variables to patterns, i.e. terms with variables. We
define T (F ,X) as the set of terms built from a given finite set F of function
symbols and a denumerable set X of variables and Var(t) as the set of variables
occurring in a term t. We assume that the reader is familiar with these notations
and to get more details, he can refer to the main concepts of general logic [Mes89]
and rewriting logic [Mes92].

4

To summarize, the general form of ELAN rules is actually as follows:

[`] l → r where p1 := (S1)c1 . . . where pn := (Sn)cn

– l, r, p1, . . . , pn, c1, . . . , cn ∈ T (Σ,X),
– Var(pi) ∩ (Var(l) ∪ Var(p1) ∪ · · · ∪ Var(pi−1)) = ∅,
– Var(r) ⊆ Var(l) ∪ Var(p1) ∪ · · · ∪ Var(pn) and
– Var(ci) ⊆ Var(l) ∪ Var(p1) ∪ · · · ∪ Var(pi−1).

In such expressions, where true := c is usually written if c. The pattern pi

often reduced to a variable x. Si may be the identity strategy, which is written
()ci.

To apply the rule

[`] l → r where p1 := (S1)c1 . . . where pn := (Sn)cn

to a subject t, the matching substitution from l to t (lσ = t) is successively
composed with each matching µi from pi to (Si)ciσµ1 . . . µi−1, for i = 1, . . . , n.
To evaluate each (S)c, c is first normalized using the unlabelled rules, then one
tries to apply a labelled rule according to the strategy S. Choice points are set
when there are several results and if at some point the set of results is empty,
the system backtracks to the previous choice point. When the rule contains a
sequence of matching conditions, failing to satisfy the i-th condition causes a
backtracking to the previous one.

Associative Commutative functions Associative and commutative (AC for
short) functions introduce an intrinsic non-determinism. Since an AC matching
problem can have several solutions, one may want to get all solutions of an AC
matching problem and build all possible results of rewriting with these different
matching substitutions.

When an ELAN rule has a left-hand side l or a pattern p that contains AC
function symbols, AC matching is called and can return several solutions. This
provides an additional potentiality of backtracking.

As a consequence of these features, the language allows different program-
ming styles. Functional programs are naturally expressed with confluent and
terminating rules, while the backtracking mechanism used to handle several re-
sults gives a flavor of logic programming and allows to program non-deterministic
computations. The main originality is surely the capability of strategy program-
ming for expressing the control of programs in a declarative way.

Adding objects oriented features to ELAN amounts to enrich the language
with OModules and rules on objects, described below.

2.2 General syntax of OModules

To each class definition corresponds a specific OModule. In order to differentiate
these modules from ELAN standard ones, a particular syntax for OModules is
introduced, quite similar to object languages like Smalltalk-80 or OCaml [RV98].

5

In an OModule, the following items are successively defined: the attributes
composing each object of this class, the methods associated to the class, the
imported modules and the inherited classes.

Attributes. Each object is characterized by its attributes. To each attribute is
associated a type (or sort) defining the set of values that it can take. An initial
value is also specified for each attribute which is used when a new object of the
class is created.

Example 1 Let us consider the class Point defining points in a bidimen-
tionnal space. Two attributes are declared in this class: the first one, called X,
defines the abscissa of any point and the second one, called Y, for the ordinate.
This class is declared in the following object module:

class Point

attributes X:int = 0

Y:int = 0

End

Any object of this class is created with an abscissa and an ordinate initialized to
0.

Methods. A method is a function that can be applied to a given object called
target object. This method can modify the target object. Calling a method m on
an object o is denoted by o.m. This is what is usually called message passing.
We distinguish here two kinds of methods.

First, the generic methods are those that are automatically defined by the
system. These methods deal with the modification and the access to the value
of an attribute and also with the creation of an object of a given class.

Let us consider a class C where an attribute A of sort tA is defined. Two
methods, GetA and SetA, are associated to this class and to this attribute.

– The message o.GetA calls the method GetA on the object o. The result of
this method call is of sort tA and is the value associated to the attribute A

of the object o.

– The message o.SetA(V) calls the method SetA on the object o with the
parameter V of sort tA. The result is the object o updated by replacing the
value of the attribute A by the given value V .

In each class, a specific method called new is defined which constructs a new
initial object of the class, whose attributes are initialized with default values.
This object has access to all methods defined in the class. Any new object of this
class is created as a copy (a clone) of the initial object and can of course be mod-
ified later on. This technique is used in actor languages like Scheme [ADH+98]
or Common Lisp [Ste90].

6

The second kind of methods are those defined by the user: the user methods.
A user method is given by its name, a list of arguments if necessary, the sort of
the result, possibly local variables and its body.

In the method definition, local variables must be declared before being used
in the body in local assignments.

A method can have parameters defined by a formal name and a sort. The
object designed by the method call is a particular implicit parameter: it can be
referred to by the keyword self in the body of the method. This parameter does
not have to be declared in the list of arguments.

Method bodies are composed of different instructions: the method call,
the concatenation of several instructions, boolean tests and local assignments.
These instructions are illustrated in the next example.

Example 2 Let us consider the class PointTranslation with two attributes
X and Y of sort int initialized to 0 and which defines two methods: a first one,
TranslateX, modifies the value of the attribute X by adding the value of a pa-
rameter N to the old value assigned to X. The second one, Translate, calls the
translation over X only if a condition on the values of X and Y is checked. If this
is the case, a value for the local variable N is computed to allow the method call
of Translate parameterized by N.

class PointTranslation

attributes X:int = 0

Y:int = 0

method TranslateX(N:int) for PointTranslation

<self.SetX(self.GetX + N)>

method Translate for PointTranslation N:int

<if self.GetX > self.GetY ;

N := self.GetX - self.GetY ;

self.TranslateX(N)>

End

Importation of modules. Each object module can import others modules
which are not object modules but standard ELAN modules where sorts, opera-
tors, rules and strategies are defined. An object module may use a library of
standard ELAN modules, but is not allowed to import another object module.
In this way, these importations are different from the inheritance mechanism of
object languages presented below.

Example 3 Let us consider the class Point defined in the example 1. Now,
we enrich it in order to define colored points. The colors of the points are defined
in a standard ELAN module that is called color.eln in which the sort color is
defined as the sort that enumerates all the possible color values. Let us consider
that Black is one of these values.

We introduce the new class of colored points ColoredPoint, where the at-
tribute denoting the color of each point is the attribute Color, of sort color

7

initialized with the value Black, we define the object module ColoredPoint as
follows:

class ColoredPoint

imports color

attributes X:int = 0

Y:int = 0

Color:color = Black

End

Inheritance. An object module can inherit attributes and methods from an-
other class by using the keyword from followed by a class name. The inheritance
mechanism allows a given class B, inheriting a class A, to specialize the inherited
class: attributes and methods defined in A are available, but new attributes and
new methods can then be defined too. Methods can also be overridden in order
to specialize them. This kind of inheritance is called simple inheritance.

The inherited methods are overloaded with the definition of methods with
the same name but their sorts are different according to the associated class.
The overloading of methods can also be used to redefine a method. The sort
and the body of the method are then different between the two classes. This
feature also holds for attributes that can be overloaded by giving another initial
value.

Example 4 Let us consider the example of the class Point defining basic
points given in Example 1 and the class ColoredPoint defining colored points
given in the Example 3. Instead of completely redefining the class ColoredPoint

as before, inheritance can be used to simply define the ColoredPoint class from
the Point class as follows:

class ColoredPoint

imports color

from Point

attributes Color:color = Black

End

The attributes X and Y from class Point are inherited, as well as the
particular methods GetX, GetY, SetX and SetY associated to the Point class.
Thus, we only have to define the attribute Color while the associated methods
GetColor and SetColor are then automatically associated.

The simple inheritance that is defined here can be compared to simple in-
heritance in Java but is less powerful than in Smalltalk-80 where inheritance is
multiple, which means that a class can inherit several other classes.

The complete syntax of OModules and more examples can be found in [Dub01].

8

2.3 Rules on objects

An object base represents the set of all objects that live at a given time in the
system. Rules are defined to delete, modify or add objects in this object base.
An informal presentation is given here.

Rules are of the form:

[lab] O1 . . . Ok ⇒ O′

1 . . . O′

m [if t | where l]∗

where O1, . . . , Ok , O′
1, . . . , O

′
m are objects, t is a boolean term and l a local as-

signment, that both may involve objects and method calls. This rule, as standard
ELAN rules previously presented, can be labelled. The Oi objects of the left-hand
side represent the matching conditions of this rule. The rule is applied only if
these objects can be found in the object base. Each rule mentions the relevant
information on the object base; the context is omitted. The order of objects Oi

and O′

j in both sides is not relevant since an AC operator is used for the objects
base construction. Each Oi object of the left-hand side has one of two possible
forms: the first one, Oi : ClassNamei :: [Att1(V alue1) , . . . , Attn(V aluen)],
corresponds to an object of a given class ClassNamei where few attributes Atti
are specified and the second form, Oi : ClassNamei, corresponds to an object
for which only the class ClassNamei is specified.

In general, the application of a rule on the data base of objects may return
several results, for instance when several objects or multisets of objects match
its left-hand side. This introduces some non-determinism and the need to control
rule application. This is why the concept of strategy is introduced. Strategies
are used to control the application of rules on objects: strategies provide the
capability to define a sequential application of rules; to make choices between
several rules that can be applied; to iterate rules; etc.

Including objects in rules controlled by strategies is now possible in the de-
fined formalism of rules working on an object base. Planification or scheduling
problems are easily expressed as shown in [DK00b] where the formalism of rules
presented in this paper is enriched in order to also control a constraint base.
Strategies are used in both cases to control the application of the rules. Other
examples of applications can be found in [Dub01].

3 An algebraic encoding of objects

Our purpose now is to show how the definition of classes in the object modules
can be implemented in a first-order algebraic language such as ELAN. We choose
here an approach where objects and classes are represented as objects like in
the class-based language Smalltalk-80 where the unique entity is the object. This
implementation has been guided by a few choices.

There is a distinction between attributes and methods. In many applications,
using objects essentially consists in reading or modifying the values of attributes.
Thus, we have to define a structure where the values of attributes are quickly
accessible. The difference between attributes and methods is a good way to

9

distinguish what represents the state of an object at a given time (the attributes
and their associated values) and the functions that can be applied to this object
(the methods). However, we do not want to separate an object with its attributes
from the set of methods that can be applied to the object. We thus have to define
a structure where each object includes the methods associated to it.

The application of a method is defined with rewrite rules. This imposes some
(quite reasonable) restrictions on the definition of methods and is compatible
with the distinction between attributes and methods in the following way: to an
attribute is associated a value which can be modified during the evaluation, but
no rewrite rule. An attribute is mutable by rewriting, and complex expressions
may be considered as values of attributes. On the contrary, methods are defined
by rewrite rules and are non-mutable, i.e. once rewrite rules associated to meth-
ods have been defined, one cannot delete or even change them. Thus, an object is
composed of mutable attributes, whose values can be changed during evaluation,
and of references to non-mutable methods. The reference to any method can be
hidden or revealed during the execution and thus, the ability for an object to
execute a method can change.

3.1 A representation based on operators and rules

Each object composed of attributes and methods which the object has access
to is represented by a term; methods are represented by functions defined by
rewriting rules.

– In order to represent the attributes and their corresponding values, the object
structure involves a set of pairs (attribute,value). Each attribute is denoted
by a constant and each value by a term with the same sort.

– The object structure also involves a set of constants denoting methods. To
each of them, an operator is associated that has the same name. To each
method body corresponds a rewrite rule right-hand side, with, possibly, local
assignments and boolean tests.

This object representation is schematized in Figure 1.
Definition of operators and rules associated to the object representation are

detailed in Section 3.2 and in Section 3.3. Operators and rules associated to user
methods are detailed in Section 3.4.

3.2 Operators associated to the representation

The signature of operators that are defined to build the representation of objects
is as follows:

[] : Methods 7→ Object

, : Methods × Methods 7→ Methods (AC)
: Method 7→ Methods

() : MName × MBody 7→ Method

: MName 7→ Method

10

.......

..............

Attribute 1

Attribute m

Value 1

Value m

method 1

Representation of an object

Rule for method 1

Rule for method n

The set of rules

method m

.......

.......

Rule for method m

Fig. 1. Object representation

The notation used is the following: each operator takes arguments that are
denoted by . The sort of these arguments are given in the left part of the profile
while the right part is the sort of the result. An operator is mixfix, that is to say
that an argument can appear anywhere in the operator definition. For instance,
() has two arguments of respective sorts MName and MBody and gives a
result of sort Method. This is a mixfix operators that builds the association
(attribute,value): the name of the attribute (of sort MName) appears in the
first place and the corresponding value (of sort MBody) between the brackets.

[] is the constructor of objects. Each object o has the form [LM] where
LM , of sort Methods is a set composed of pairs attribute(value) and of refer-
ences to methods. This set is built with the operator , which is associative
and commutative; this is indicated by annotation (AC). Each element, of sort
Method, is thus either a pair (attribute,value), or a reference to a method (the
last operator) also of sort MName.

To these declarations and definitions, we also add rules that correspond to
the manipulation of objects: to add an attribute, to modify its value, to access a
method and to create a new object. These rules are defined in Section 3.3. But,
before defining the rules, we have to present the corresponding operators:

add(,) : Object × Method 7→ Object

kill(,) : Object × MName 7→ Object

access(,) : Object × MName 7→ MBody

new() : Object 7→ Object

These four basic operators are defined and used to construct and decom-
pose objects: the add(,) operator is used to add a new element to the set of
attributes and methods; the kill(,) operator is used to remove an element
given in the parameters from the set of pairs and references that compose the
object; the access(,) operator is used to have access to the value associated
to an attribute given as parameter; the last new operator is used to create a new
object from the object representing the class.

In the set of methods, the two particular methods Get and Set take as
arguments the attribute they deal with.

11

Get(,) : Object × MName 7→ MBody

Set(, ,) : Object × MName × MBody 7→ Object

3.3 Rules associated to the representation

We now define a system R of rewriting rules that are used to evaluate objects.
This system is based on the above representation of objects and inspired from the
object ρ-calculus [CKL01]. The whole rewrite system R can be found in Figure 2.
R is composed of rules related to the object definition and manipulation. We
have proved in [Dub01] that the system R is confluent and terminating.

Add a component add([LM], me) →R [LM, me]

Remove a component-1 kill([M(B), LM], M) →R [LM]

Remove a component-2 kill([M, LM], M) →R [LM]

Access to an attribute value access([M(B), LM], M) →R B

Access to a value by Get Get(o, M) →R access(o, M)

Modification of a value by Set Set(o, M, B) →R add(kill(o, M), M(B))

Creation of a new object new(o) →R

[a1(vi1), . . . , an(vin), m1, . . . , mm]
The operator Geta Geta(o) →R Get(o, a)

The operator Seta Seta(o, v) →R Set(o, a, v)

Method call for Geta [LM, Geta].Geta →R Geta([LM, Geta])

Method call for Seta [LM, Seta].Seta(v) →R Seta([LM, Seta], v)

Method call for new [LM, new].new →R new([LM, new])

Method call for a method m [LM, m].m(p1, . . . , pm) →R

m([LM, m], p1, . . . , pm)

Fig. 2. The system R

3.4 Operators and rules associated to user’s methods

For each user methods, we associate:

12

– a constant of sort MName representing the name of the method;
– an operator declaration which profile is based on the profile of the user’s

method: to each parameter of the method corresponds an argument of the
operator. We also add to the corresponding operator a first argument which
represents the object itself (the self);

– a set of rules defining this operator.

Let us now present how the rules associated to user’s methods are built.
This is performed by defining a transformation mechanism that deduces rewrite
rules for each user method. The operator build − rule() (cf. Figure 3) takes as
argument the definition of a method in the formalism described in Section 2.2
and returns the associated rewrite rule in the ELAN syntax.

��� ��

build − rule(method name (args) for t vars body) =
rules for t

S : class name;
var − decl(vars, args, body)
[] name(S, get − args(args)) => build − rhs(body, list vars) end

end
build − rule(method name (args) for t body) =

rules for t

S : class name;
var − decl(args, body)
[] name(S, get − args(args)) => build − rhs(body, list vars) end

end
build − rule(method name for t vars body) =

rules for t
S : class name;
var − decl(vars, body)
[] name(S) => build − rhs(body, list vars) end

end
build − rule(method name for t body) =

rules for t

S : class name;
var − decl(body)
[] name(S) => build − rhs(body, list vars) end

end

Fig. 3. Definition of function build − rule

In the definition of build − rule, we handle the four possibilities that can
appear and which depend on having or not arguments (args) and local variable
declarations (vars). The rules are built in the ELAN syntax.

The operator build − rhs(,) takes a body and a list of variables which
is built step by step. Each new variable added to this list corresponds to a
local variable used when an object is modified. This list memorizes this in-
formation. When initialized, this variable list is only composed of the variable S.

Example 5 Let us consider the Translate method presented in Exemple 2.
The rule corresponding to this method is defined by build − rule and the result
is:

13

rules for PointTranslation

N : int;

S : PointTranslation;

O1 : PointTranslation;

[] Translate(S) => O1

if GetX(S) > GetY(S)

where N := () GetX(S) - GetY(S)

where O1 := () TranslateX(S,N)

More details can be found in [Dub01].

The system R presented in Section 3.3 is thus enriched with the rules defining
the user methods to give a set R′. For the time being, the system does not check
that R′ is confluent and terminating and this is under the user’s responsibility.
Indeed, we aimed at a complete proof environment that would automatically
check these properties.

4 An operational semantics based on the ρ-calculus

Our goal is now to give a formal semantics to this object-oriented extension
of ELAN. Several calculus as the Object Lambda Calculus defined by K. Fisher,
F. Honsell and J.C. Mitchell [FHM94] and the Object Calculus of M. Abadi and
L. Cardelli [AC96] are candidates to provide object languages with a formal
semantics. Our choice is to base the semantics on another calculus called the
Rewriting Calculus, or ρ-calculus defined by H. Cirstea and C. Kirchner [CK99]
that encompasses in particular both λ-calculus and term rewriting. In this calcu-
lus, terms, rewriting rules and application of a rule on a term can be represented.

This choice was done for two reasons: first, the ρ-calculus already provides
an operational semantics for ELAN and second, it is general enough to represent
both the Object Lambda Calculus and the Object Calculus as shown in [CKL01],
where an extension of the ρ-calculus, called the object ρ-calculus has been de-
fined.

In order to prove that the ρ-calculus gives an operational semantics to the
object extension of ELAN, we establish a close correspondence between reduction
of an object term in the algebraic theory of objects given in Section 3 and
reduction of the corresponding ρ-term in the ρ-calculus.

In the algebraic theory of objects, an object is represented as a term of sort
Object. We have proved that the set of rules R is terminating and confluent
and we can consider a confluent and terminating extended set R′ with rewriting
rules corresponding to user-defined methods. So each term t of sort Object has
a normal form denoted by NFR′(t), or NF (t) for short.

In Figure 4, we illustrate that each reduction (noted �����) of a term t of sort
Object to its normal form NF (t) corresponds to a reduction (noted →) in the
ρ-calculus from a ρ-term t0 to another one t′0, where t0 and t′0 are the respective
translations of t and NF (t) considering a translation τ . Definition of τ , results
and proofs can be found in [Dub01].

14

t

NF (t)
R’

(NF (t))
R’

τ

(t)τ
τ

τ

* *

R’ ρ

Object term ρ - term

Fig. 4. Correspondence between object rewriting and ρ-term evaluation

Once object terms have been translated to ρ-terms, a data base of objects is
translated to a ρ-term built with an AC-operator on top (a set of ρ-terms). Rules
on objects also correspond to ρ-terms [CK99] and application of these rules to
the data base is application of ρ-calculus.

5 Conclusion

The purpose of this paper was to show that objects, rewriting rules and strategies
can be integrated in a same formalism with an operational semantics defined by
the ρ-calculus.

We have proposed a language to define objects in the “programming by
rewrite rules and strategies” paradigm offered by the ELAN system. This con-
sists in adding OModules to the standard modules where operators, rules and
strategies are defined in ELAN; in OModules, classes with attributes and meth-
ods are declared. Mixing OModules with standard modules allows the developer
to define applications where special rules that manage objects can be defined.
Furthermore, we have shown that objects can also be represented in the ρ-
calculus that already gives an operational semantics to ELAN. The purpose of
this work was to provide object features in ELAN in a semantically coherent way,
without pretending to design a new powerful object oriented language. On the
other hand, thanks to the operational semantics based on the rewriting calcu-
lus, one can develop verification tools that often lack in classical object oriented
languages.

Developing objects in a rewriting context is also useful for rewriting itself.
Indeed, when considering only a part of the object base in an object rule, this
allows a better structure of the knowledge and this also allows a kind of global
variable represented by the object base. This is very useful in a rewriting context
where the possibility to use global variables often lacks.

In [DK00b], a formalism where rules may also be extended with constraints
is presented. This leads to a general framework where rewriting rules and strate-
gies can manage simultaneously an object base and a constraint base. As the
constraint solver used in the applications definition is also based on the rewrite

15

system ELAN, and, thus, on the ρ-calculus semantics, this complete framework
is also based on the ρ-calculus semantics [Dub01].

Some applications of ELAN extended with objects have been developed. A
first one consists in defining a multi-elevator controller [DK00a]. A second one
consists in defining a print controller [DK00b]; in this case, rules are extended
with objects and also with constraints. Planification and scheduling problems
are then very easily defined in this formalism.

In such applications, strategies to control the applications of rules on objects
have been proved useful. A further interesting direction is to use strategies to
define methods, especially non deterministic ones, inside OModules. Although
this is not a problem at the semantical level, this would need to implement in
ELAN an explicit application operator.

Adding new components to the standard ELAN system such that OModules
and new kind of rewrite rules was made possible by using a transformation pro-
cess of OModules into ELAN modules, which relies on the algebraic theory of
objects presented in this paper. The extended language has been prototyped in
ELAN in this way, and more details can be found in [DK00a, Dub01]. Although
this first experiment was a good approach to explore the power of the frame-
work, in order to get an efficient programming language, one needs to go further.
A more promising approach, currently explored, is to translate object programs
into an internal term structure directly executable by the ELAN compiler, avoid-
ing in this way to produce new ELAN modules.

A An example

In order to illustrate now the use of objects in the extended language, let us
consider a program whose purpose is to automate and control an elevator system
for buildings with multiple elevators.

Several implementations of a multi-elevator controller exist in the literature,
for instance based on constraint nets [ZM93], on temporal logic [Bar85] or on
the Abstract State Machine [Abr96]. Although not original, this example nicely
illustrates the use of ours formalism based on rules, objects and strategies. Com-
pared to other approaches, ours is uniform, the rules are clear and the ability for
the user to develop easily strategies to express control is very appealing. More-
over, verification techniques available in rule formalism can be adapted to prove
properties such as termination, confluence, completeness of the specification.

To formalize the multi-elevator controller, we first define two classes: a class
MLift for elevators and a class Call for the controller. Then, we present the
rules defined to design the multi-elevator controller and, finally, the strategies
before a short presentation of an execution.

A.1 The class MLift

This class describes elevators. Each elevator is an object of this class, character-
ized by:

16

– its current floor denoted by the attribute CF -current floor- represented by
an integer,

– its state: is it going up?, down?, or is it waiting for a call? This is defined by
the attribute State of sort LiftState,

– its list of floors where it has to stop with the attribute LStop which is a list
of integers.

The sort describing the state of an elevator is called LiftState. This sort is
defined with two operators: a constant Wait of sort LiftState and an operator
Move() which takes a term of sort Direction as argument (Up and Down are of
sort Direction) and returns an element of sort LiftState. This is defined in a
standard ELAN module by:

operators global

Up : Sense;

Down : Sense;

Move(@) : (Sense) LiftState;

Wait : LiftState;

end

Three other attributes are also defined:

– Zone that indicates the zone where this elevator is. Indeed, each building is
divided in several zones, each one composed by consecutive floors, and there
is as many zones as elevators. For instance, considering a building with 4
elevators and with 27 floors, four zones will be considered: the first one from
floor 0 to 6, then, a second one (floor 7 to 13), a third one (floor 14 to 20)
and a last fourth one form floor 21 to 27. This attribute is useful if we want
to guarantee that when dividing the number of floors into a number of zones,
each zone does not have more than two elevators working at any moment.
This guarantees a better quality of service for the access to an elevator in
the building.

– F (standing for Flag) whose value is either 0 or 1 indicates that an elevator
is performing an instruction (F to 1) or waiting for a new instruction (F to
0).

– I, standing for Interruption, is an integer which can take value in {0, 1}. If
I= 0, then the elevator has no interruption and is available; if I= 1, then,
the elevator is out of service.

Several methods are defined for the class MLift:

– a method WhichSense() takes an integer representing the new floor that
the elevator has to reach from its current one. It returns the direction that
the elevator has to adopt: either it will go up or down.

– the method UpdateZone computes, after the elevator has moved, in which
zone it is.

– a method AddLStop() takes a list of integers L representing a list of different
floors and returns the object representing the elevator whose attribute LStop
(list of floors) has been updated with L. The new list LStop is sorted.

17

– the last method, RemoveLStop(), deletes from the list of stops LStop the
floor given as parameter of this method.

These definitions and declarations of methods and attributes are grouped
together in the definition of the OModule for the class MLift:

class MLift

imports ToolsMLift

attributes CF:int = 0

State:LiftState = Wait

LStop:list[int] = nil

Zone:int = 0

F:int = 0

I:int = 0

method WhichSense(N:int) for MLift

S : Sense;

<S:=ChooseSense(self.GetCF,N) ; self.SetState(Move(S))>

method UpdateZone for MLift

<self.SetZone(NewZone(self.GetCF))>

method AddLStop(L:list[int]) for MLift

<self.SetLStop(AddAndSort(self.GetLStop,L))>

method RemoveLStop(N:int) for MLift

<self.SetLStop(RemoveList(self.GetLStop,N))>

End

A.2 The class Call

This class describes the central memory for the multi-elevator controller. When
people enter the elevator, they select floors where they want to go out. This is
formalized by an attribute LCall composed of a list of integers: the requested
floor. These are floors that have to be served to load people.

To distinguish calls that are processed from those that are waiting, a second
attribute AssignedCall is composed of calls that have been assigned to an
elevator and which are to be processed.

Different methods are defined in the object module describing the class Call:

– a method AddAssignedCall() takes an integer that represents a floor and
adds it in the list of calls that are processed.

– a method RemoveAssignedCall() takes an integer that represents a floor
and removes it from the list of calls that are currently processed.

– a last method called RemoveLCall() takes an integer that represents a floor
and removes it from the list of calls that are waiting to be processed.

18

The class Call is defined in the following OModule:

class Call

imports Tools

attributes LCall:list[int] = nil

AssignedCall:list[int] = nil

method AddAssignedCall(N:int) for Call

<self.SetAssignedCall(AddList(self.GetAssignedCall,N))>

method RemoveAssignedCall(N:int) for Call

<self.SetAssignedCall(RemoveList(self.GetAssignedCall,N))>

method RemoveLCall(N:int) for Call

<self.SetLCall(RemoveList(self.GetLCall,N))>

End

A.3 The rules

The rules that define the actions on elevators can now be described.
The two main rules are the rule Up and the rule Down. An elevator going

upward or downward can continue if the current floor is not a floor occurring in
its list of stops or in the list of calls. If the elevator can continue, the current
floor and the zone are updated. A condition to apply these rules is that the value
of the flag is 0; this value is updated to 1 after application.

[Up] O1:MLift::[State(Move(Up)) , F(0) , I(0)]

O2:LCall

=>

O1(CF<-O1.CF+1).UpdateZone(F<-1)

O2

if not(in(O1.CF,O1.Stop))

if not(in(O1.CF,O2.LCall))

[Down] O1:MLift::[State(Move(Down)) , F(0) , I(0)]

O2:LCall

=>

O1(CF<-O1.CF-1).UpdateZone(F<-1)

O2

if not(in(O1.CF,O1.Stop))

if not(in(O1.CF,O2.LCall))

Each elevator can change its moving direction in two cases: either it has
reached the top level (or the bottom level), or its current floor is greater (resp.
lower) than the maximum (resp. the minimum) level where it has to stop. This
is represented by these two rules ChangeToDown and ChangeToUp:

19

[ChangeToDown]

O1:MLift::[State(Move(Up)) , F(0) , I(0)]

=>

O1(State<-Move(Down),F<-1)

if O1.CF > Max(O1.LStop) or O1.CF == MaxLevel

[ChangeToUp]

O1:MLift::[State(Move(Down)) , F(0) , I(0)]

=>

O1(State<-Move(Up),F<-1)

if O1.CF < Min(O1.LStop) or O1.CF == MinLevel

Each elevator has to stop for different reasons. An elevator stops when its
current floor is in its list of requested stops (rule OpenDoorsStop) or when it is
in the list of calls (rule OpenDoorsCall). These rules can be applied in the two
moving directions; this corresponds to the variable S for the attribute State.

If the rule OpenDoorsStop is applied, the current floor is removed from the list
of stops. If the rule OpenDoorsCall is applied, the current floor is also removed
from the list of calls and then, the new stops requested by people entering the
elevator are added to the list of stops.

[OpenDoorsStop]

O1:MLift::[F(0) , I(0)]

=>

O1.RemoveLStop(O1.CF)(F<-1)

if O1.State != Wait

if in(O1.CF,O1.LStop)

[OpenDoorsCall]

O1:MLift::[F(0) , I(0)]

O2:Call

=>

O1.AddLStop(L1)(F<-1)

O2.RemoveLCall(O1.CF)

if O1.State != Wait

if in(O1.CF,O2.LCall)

where L1 := () ObtainNewStops(O1.CF)

If the current floor of an elevator is in the list of calls and in the list of stops,
instead of applying consecutively the two previous rules, we just apply one rule
labelled OpenDoorsStopAndCall.

[OpenDoorsStopAndCall]

O1:MLift::[F(0) , I(0)]

O2:Call

=>

O1.AddLStop(L1).RemoveLStop(O1.CF)(F<-1)

O2.RemoveLCall(O1.CF)

if O1.State != Wait

20

if in(O1.CF,O1.LStop)

if in(O1.CF,O2.LCall)

where L1 := () ObtainNewStops(O1.CF)

A feature of this multi-elevator controller is that priority is given to a call,
and once it has been served, other requested stops are served.

A call is assigned to an elevator whose State value is Wait. This is done by
the rule AssignACall. When an elevator can be selected (i.e. there is at least a
floor calling an elevator), we compute which floor is selected (this is the nearest
one and we call it NextFloor) by the function ChooseNextFloor. Then, the two
objects are updated by removing NextFloor from the list of calls, by adding it
to the list of assigned calls in the central memory and to the list of stops, and
by choosing the good direction to go for the selected elevator.

[AssignACall]

O1:MLift::[State(Wait) , F(0) , I(0)]

O2:Call

=>

O1.WhichSense(NextFloor).AddLStop(NextFloor.nil)(F<-1)

O2.AddAssignedCall(NextFloor).RemoveLCall(NextFloor)

if O2.LCall != nil

where NextFloor := () ChooseNextFloor(O1.CF,O2.LCall)

When the elevator reaches a floor, we test if this floor is assigned to it, we
apply the rule OpenDoorsAssignedCall, that updates the list of stops and the
list of assigned calls. It also uses the function ObtainNewStops that asks people
inside the elevator which floors they want to go to.

[OpenDoorsAssignedCall]

O1:MLift::[F(0) , I(0)]

O2:Call

=>

O1.AddLStop(L1).RemoveLStop(O1.CF)(F<-1)

O2.RemoveAssignedCall(O1.CF)

if O1.State != Wait

if in(O1.CF,O2.AssignedCall)

where L1 := () ObtainNewStops(O1.CF)

A condition to assign a call to an elevator is that at least one elevator has
the attribute State to Wait. This is possible only when its list of stops is empty
as shown in the rule Wait:

[Wait] O1:MLift::[F(0) , I(0)]

=>

O1(State<-Wait)

if 01.State != Wait

if O1.LStop = nil

21

A.4 Strategies

In general, the application of a rule on the data base of objects may return
several results, for instance when several objects or multisets of objects match
its left-hand side. This introduces some non-determinism and the need to control
rule application. This is why the concept of strategy is introduced. Strategies
are used to control the application of rules on objects: strategies provide the
capability to define a sequential application of rules; to make choices between
several rules that can be applied; to iterate rules; etc.

For the previous example, we define a few strategies to guide the application
of the rules on the data base of objects.

The first one is ONELIFT which tries to assign a call to a waiting lift; then, it
tries to open the doors of the elevator at current floor if, 1- the floor corresponds
to an assigned call, 2- it corresponds to a stop and a call, 3- it corresponds
only to a call or 4- only to a stop. If the current floor is not a floor where a
stop is required, it checks if the direction of the elevator has to be changed and,
otherwise, it continues to go upward or downward.

[] ONELIFT => first(AssignACall ,

OpenDoorsAssignedall ,

OpenDoorsStopAndCall ,

OpenDoorsCall ,

OpenDoorsStop ,

ChangeSenseToDown ,

ChangeSenseToUp ,

Up ,

Down)

end

This strategy is applied as long as there is an elevator whose flag is not set
at 1. To work on a set of elevators, we define the strategy ALLLIFTS:

[] ALLLIFTS => repeat*(Wait) ;

repeat*(ONELIFT) ;

repeat*(RemoveFlag)

end

The rule RemoveFlag removes all flags at 1 and put them at 0. To go from
an initial situation to a situation where all floors are served and where nobody
is waiting inside an elevator, we define a main strategy MAIN that repeats the
rule Main until the data base of elevators does not change.

[] MAIN => first one (repeat*(Main))

end

The labelled rule Main is defined as:

[Main] ST => ST1

where ST1 := (ALLLIFTS) ST

if ST1 != ST

22

A.5 The execution

Let us consider an initial situation described as:

O(1):MLift::[CF(14), State(Wait), Zone(1), LStop(nil), F(0), I(0)]

O(2):MLift::[CF(11), State(Wait), Zone(1), LStop(nil), F(0), I(0)]

O(3):MLift::[CF(2) , State(Wait), Zone(0), LStop(nil), F(0), I(0)]

O(4):Call::[AssignedCall(nil), LCall(3.9.17.24.nil)]

Let us assume that the ground floor is floor 0 and the top level is the level
25. In this initial situation, we have three lifts O(1), O(2) and O(3). The first
one is waiting at floor 2, the second at floor 11 and the last one at level 14. Four
levels are calling an elevator: the 3rd, 9th, 17th and 24th ones.

Applying the MAIN strategy to this initial term leads to the following execu-
tion:

O(1):MLift::[CF(14),State(Move(Up)) ,Zone(1),LStop(17.nil),F(0),I(0)]

O(2):MLift::[CF(11),State(Move(Down)),Zone(1),LStop(9.nil) ,F(0),I(0)]

O(3):MLift::[CF(2) ,State(Move(Up)) ,Zone(0),LStop(3.nil) ,F(0),I(0)]

O(4):Call::[AssignedCall(3.9.17.nil) , LCall(24.nil)]

O(1):MLift::[CF(15),State(Move(Up)) ,Zone(1),LStop(17.nil),F(0),I(0)]

O(2):MLift::[CF(10),State(Move(Down)),Zone(1),LStop(9.nil) ,F(0),I(0)]

O(3):MLift::[CF(3) ,State(Move(Up)) ,Zone(0),LStop(3.nil) ,F(0),I(0)]

O(4):Call::[AssignedCall(3.9.17.nil) , LCall(24.nil)]

An elevator is stopped at level 3, please enter the desired stops

as a list of sorted integers separated by . and terminated by end:

After the user has entered different stops that will be considered by the
elevator controller, several execution steps occur and lead, finally, to the two
last steps below:

...

O(1):MLift::[CF(17), State(Wait) , Zone(1), LStop(nil), F(0), I(0)]

O(2):MLift::[CF(10), State(Wait) , Zone(1), LStop(nil), F(0), I(0)]

O(3):MLift::[CF(24), State(Move(Up)), Zone(2), LStop(nil), F(0), I(0)]

O(4):Call::[AssignedCall(nil), LCall(nil)]

O(1):MLift::[CF(24), State(Wait), Zone(2), LStop(nil), F(0), I(0)]

O(2):MLift::[CF(17), State(Wait), Zone(1), LStop(nil), F(0), I(0)]

O(3):MLift::[CF(10), State(Wait), Zone(1), LStop(nil), F(0), I(0)]

O(4):Call::[AssignedCall(nil), LCall(nil)]

During this execution, we observe the evolution of the set of elevators step
by step:

1. At 1st step, three calls are assigned (these three calls are put in the attribute
AssignedCall of object O(4)), one to elevator O(1) (the 17th floor), one to

23

the elevator O(2) (the 9th floor) and one to the elevator O(3) (the 3rd floor).
One call has not yet been assigned. This assignment step of calls also selects
a direction for each elevator (two go up and one down).

2. The 2nd step does not change a lot of attributes. Each elevator goes on up or
down. We can notice that one elevator, the one called O(3), has reached the
requested 3rd floor. Then, the operation ObtainNewStops can be performed
and it consists in asking user new stops for this elevator. This uses the
inputs/outputs of the ELAN system.

3. This process continues for a few steps...
4. The last but one step has no more call. Two elevators are waiting (O(1) and

O(2)) and the O(3) elevator is going down, it is at floor 24 without any floor
to serve.

5. The last step makes the previous elevator waiting at floor 24. This step
cannot be reduced anymore, this is the result term.

References

[Abr96] J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge
University Press, 1996.

[AC96] M. Abadi and L. Cardelli. A Theory of Objects. Springer-Verlag, 1996.

[ADH+98] H. Abelson, R. K. Dybvig, C. T. Haynes, G. J. Rozas, N. I. Adams IV,
D. P. Friedman, E. Kohlbecker, G. L. Steele Jr., D. H. Bartley, R. Hal-
stead, D. Oxley, G. J. Sussman, G. Brooks, C. Hanson, K. M. Pitman, and
M. Wand. Revised5 report on the algorithmic language Scheme. Higher-
Order and Symbolic Computation, 11(1):7–105, August 1998.

[AG96] K. Arnold and J. Gosling. The Java programming language. Addison
Wesley, 1996.

[Bar85] H. Barringer. Up and down the temporal way. Technical Report UMCS–
85–9–3, Department of Computer Science, Manchester University, Oxford
Rd., Manchester M13 9PL, UK, 1985.

[BCD+00] P. Borovanský, H. Cirstea, H. Dubois, C. Kirchner, H. Kirchner, P.-E.
Moreau, C. Ringeissen, and M. Vittek. ELAN V 3.4 User Manual. LORIA,
Nancy (France), fourth edition, January 2000.

[BKKR01] P. Borovanský, C. Kirchner, H. Kirchner, and C. Ringeissen. Rewriting
with strategies in ELAN: a functional semantics. International Journal of
Foundations of Computer Science, 2001.

[CDE+00] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart̀ı-Oliet, J. Meseguer, and
J.F. Quesada. Towards Maude 2.0. In K. Futatsugi, editor, WRLA2000,
the 3rd International Workshop on Rewriting Logic and its Applications,
September 2000, Kanazawa, Japon. Electronic Notes in Theoretical Com-
puter Science, 2000.

[Cir00] H. Cirstea. Le Rho Calcul: Fondements et Applications. PhD thesis, Uni-
versité Henri Poincaré - Nancy 1, 2000.

[CK99] H. Cirstea and C. Kirchner. Combining higher-order and first-order com-
putation using ρ-calculus: Towards a semantics of ELAN. In D. Gabbay and
M. de Rijke, editors, Frontiers of Combining Systems 2, Research Studies,
ISBN 0863802524, pages 95–120. Wiley, 1999.

24

[CKL01] H. Cirstea, C. Kirchner, and L. Liquori. Matching Power. In A. Mid-
deldorp, editor, Proceedings 12th Conference on Rewriting Techniques and
Applications, RTA 2001, Utrecht, The Netherlands, volume 2051 of Lecture
Notes in Computer Science, pages 77–92. Springer-Verlag, 2001.

[CL96] Y. Caseau and F. Laburthe. CLAIRE: Combining objects and rules for
problem solving. In Proceedings of the JICSLP’96 workshop on multi-
paradigm logic programming,TU Berlin, Germany, 1996.

[DK00a] H. Dubois and H. Kirchner. Objects, rules and strategies in ELAN. In
Proceedings of the second AMAST workshop on Algebraic Methods in Lan-
guage Processing, Iowa City, Iowa, USA, May 2000.

[DK00b] H. Dubois and H. Kirchner. Rule Based Programming with Constraints
and Strategies. In K.R. Apt, A.C. A. C. Kakas, E. Monfroy, and
F. Rossi, editors, New Trends in Constraints, Papers from the Joint
ERCIM/Compulog-Net Workshop, Cyprus, October 25-27, 1999, volume
1865 of Lecture Notes in Artificial Intelligence, pages 274–297. Springer-
Verlag, 2000.

[Dub01] H. Dubois. Systèmes de Règles de Production et Calcul de Réécriture. PhD
thesis, Université Henri Poincaré - Nancy 1, 2001.

[FHM94] K. Fisher, F. Honsell, and J. C. Mitchell. A Lambda Calculus of Objects
and Method Specializatio n. Nordic Journal of Computing, 1(1):3–37, 1994.

[GR83] A. Goldberg and D. Robson. Smalltalk-80: The Language and Its Imple-
mentation. Addison-Wesley, 1983.

[HSW95] M. Henz, G. Smolka, and J. Wurtz. Object-oriented concurrent constraint
programming in oz. In V. Saraswat and P. van Hentenryck, editors, Prin-
ciples and Practice of Constraint Programming., pages 27–48. MIT Press,
1995.

[Mes89] J. Meseguer. General logics. In H.-D. Ebbinghaus et al., editor, Logic
Colloquium’87, pages 275–329. Elsevier Science Publishers B. V. (North-
Holland), 1989.

[Mes92] J. Meseguer. Conditional rewriting logic as a unified model of concurrency.
Theoretical Computer Science, 96(1):73–155, 1992.

[Mey92] B. Meyer. Eiffel: The Language. Prentice Hall, 1992.
[Ros92] J.-P. Rosen. What Orientation Should Ada Objects Take? Communica-

tions of the ACM, 35(11):71–76, 1992.
[RV98] D. Rémy and J. Vouillon. Objective ML: An effective object-oriented

extension of ML. Theory and Practice of Object Systems, 4(1):27–52, 1998.
[Ste90] G. Steele, Jr. Common lisp: The Language. Digital Press, Bedford, Mas-

sachusetts, 2nd edition, 1990.
[ZM93] Y. Zhang and Alan K. Mackworth. Design and analysis of embedded real-

time systems: An elevator case study. Technical Report TR-93-04, De-
partment of Computer Science, University of British Columbia, February
1993.

25

Modelica - A Declarative Object Oriented

Multi-Paradigm Language.

Peter Fritzson, Peter Bunus

Department of Computer and Information Science, Linköping University,
SE 581-32, Linköping, Sweden
{petfr,petbu}@ida.liu.se

Abstract. Modelica is a general multi-paradigm object-oriented lan-
guage for continuous and discrete-event specification of complex systems
for the purpose of efficient simulation, computational applications, archi-
tecture system specification, etc. The Modelica modeling language and
technology is being warmly received by the world community in model-
ing and simulation. It is bringing about a revolution in this area, based
on its ease of use, visual design of models with combination of Lego-like
predefined model building blocks, its ability to define model libraries
with re-usable components and its support for specifying complex sys-
tems involving parts from several application domains. In this paper
we present the Modelica language with emphasis on its multi-paradigm
language features including functional, object-oriented, constraint-based,
architectural, concurrent, and visual programming.

1 Introduction

Modelica is a new multi-paradigm language for hierarchical object-oriented mod-
eling and computational applications, which is developed through an interna-
tional effort [3][6][2]. The language is one of the rare examples of a programming
language that combines declarative functional programming with object-oriented
programming. In fact, Modelica integrates several programming paradigms,
which will be illustrated throughout the paper:

– Declarative functional programming using equations and functions without
side effects.

– Object-oriented programming.
– Constraint programming based on equations.
– Architectural system specification with connectors and components.
– Concurrency and discrete event programming, based on the synchronous

data flow principle.
– Visual programming based on connecting icons with ports, and hierarchical

decomposition.

Additionally, the multi-domain capability of Modelica gives the user the possi-
bility to combine model components from different application domains within

27

the same application model, e.g. combining electrical, mechanical, hydraulic,
thermodynamic, control, algorithmic components. Modelica is primarily a mod-
eling language, sometimes called hardware description language, that allows the
user to specify mathematical models of complex systems, e.g. for the purpose of
computer simulation of dynamic systems where behavior evolves as a function of
time. Modelica is also a declarative object-oriented equation based programming
language, oriented towards computational applications with high complexity re-
quiring high performance.

The execution performance of algorithmic Modelica code is close to compa-
rable code in the C language, whereas the simulation performance for equation-
based models often is better than hand programmed models in conventional
programming languages due to the advanced symbolic optimization performed
by the Modelica compiler.

The four most important features of Modelica are:

– Modelica is primarily based on equations instead of assignment statements.
This permits acausal modeling that gives better reuse of classes since equa-
tions do not specify a certain data flow direction. Thus a Modelica class can
adapt to more than one data flow context. Algorithmic constructs including
assignments are also available in a way that does not destroy the declarative
properties of the language.

– Modelica has multi-domain modeling capability, meaning that model com-
ponents corresponding to physical objects from several different domains
such as e.g. electrical, mechanical, thermodynamic, hydraulic, biological and
control applications can be described and connected.

– Modelica is an object-oriented language with a general class concept that
unifies classes, generics - known as templates in C++, and general subtyping
into a single language construct. This facilitates reuse of components and
evolution of models. The class concept is used consistently throughout the
language, e.g. packages as well as primitive types such as Integer and Real
are classes with no loss of performance.

– Modelica has a strong software component model, with constructs for cre-
ating and connecting components. Thus the language is ideally suited as an
architectural description language for complex systems.

The reader of the paper is referred to [7][8] and [4][9] for a complete description
of the language and its functionality from the perspective of the motivations and
design goals of the researchers who developed it.

2 Object-Oriented Mathematical Modeling

Traditional object-oriented programming languages like Simula, C++, Java, and
Smalltalk, as well as procedural languages such as Fortran or C, support pro-
gramming with operations on stored data. The stored data of the program in-
cludes variable values and object data. The number of objects often changes

28

dynamically. The Smalltalk view of object-orientation emphasizes sending mes-
sages between (dynamically) created objects.

The Modelica view on object-orientation is different since the Modelica
language emphasizes structured mathematical modeling. Object-orientation is
viewed as a structuring concept that is used to handle the complexity of large
system descriptions. A Modelica model is primarily a declarative mathemati-
cal description, which simplifies further analysis. Dynamic system properties are
expressed in a declarative way through equations.

The concept of declarative programming is inspired by mathematics where it
is common to state or declare what holds, rather than giving a detailed stepwise
algorithm on how to achieve the desired goal as is required when using procedural
languages. This relieves the programmer from the burden of keeping track of
such details. Furthermore, the code becomes more concise and easier to change
without introducing errors.

Thus, the Modelica view of object-orientation, from the point of view of
object-oriented mathematical modeling, can be summarized as follows:

– Object-orientation is primarily used as a structuring concept, emphasizing
the declarative structure and reuse of mathematical models.

– Dynamic model properties are expressed in a declarative way through equa-
tions.

– An object is a collection of instance variables and equations that share a set
of stored data.

– Object orientation is not viewed as dynamic message passing.

The declarative object-oriented way of describing systems and their behavior
offered by Modelica is at a higher level of abstraction than the usual object-
oriented programming since some implementation details can be omitted. For
example, the users do not need to write code to explicitly transport data between
objects through assignment statements or message passing code. Such code is
generated automatically by the Modelica compiler based on the given equations.

Just as in ordinary object-oriented languages, classes are blueprints for cre-
ating objects. Both variables and equations can be inherited between classes.
Function definitions can also be inherited. However, specifying behavior is pri-
marily done through equations instead of via methods. There are also facilities
for stating algorithmic code including functions in Modelica, but this is an ex-
ception rather than the rule.

As briefly mentioned before, acausal modeling is a declarative modeling style
meaning modeling based on equations instead of assignment statements. The
main advantage is that the solution direction of equations will adapt to the data
flow context in which the solution is computed. The data flow context is defined
by stating which variables are needed as outputs, and which are external inputs
to the simulated system. The acausality of Modelica library classes makes these
more reusable than traditional classes containing assignment statements where
the input-output causality is fixed.

To illustrate the idea of acausal physical modeling we give an example of
a simple electrical circuit, see Fig 1. The connection diagram of the electrical

29

circuit shows how the components are connected and roughly corresponds to the
physical layout of the electrical circuit on a printed circuit board. The physi-
cal connections in the real circuit correspond to the logical connections in the
diagram. Therefore the term physical modeling is quite appropriate.

R1=10

C=0.01 L=0.1

R2=100

G

AC=220

Fig. 1. Connection diagram of the acausal simple circuit model.

The Modelica SimpleCircuit class below directly corresponds to the circuit
depicted in the connection diagram of Fig 1. Each graphic object in the diagram
corresponds to a declared instance in the simple circuit model. The model is
acausal since no signal flow, i.e. cause-and-effect flow, is specified. Connections
between objects are specified using the connect statement, which is a special
syntactic form of equation that we will tell more about later.

class SimpleCircuit

Resistor R1(R=10);

Capacitor C(C=0.01);

Resistor R2(R=100);

Inductor L(L=0.1);

Ground G;

VsourceAC AC;

equation

connect (AC.p, R1.p); // Capacitor circuit

connect (R1.n, C.p);

connect (C.n, AC.n);

connect (R1.p, R2.p); // Inductor circuit

connect (R2.n, L.p);

connect (L.n, C.n);

connect (AC.n, G.p); // Ground

end SimpleCircuit;

We simulate the above model during the time period {0,0.1}:

Simulate[Circuit, {t,0,0.1}];

30

Let us plot the current in the inductor for the first 0.1 second.

PlotSimulation[L.i[t], {t,0,0.1}];

0.02 0.04 0.06 0.08 0.1
t

-2

-1

1

2

Fig. 2. Plot of the current through the inductor, L.i, from a simulation of the
SimpleCircuit model.

2.1 Modelica Classes

Modelica, like any object-oriented computer language, provides the notions of
classes and objects, also called instances, as a tool for solving modeling and
programming problems. Every object in Modelica has a class that defines its
data and behavior. A class has three kinds of members:

– Fields are data variables associated with a class and its instances. Fields store
results of computations caused by solving the equations of a class together
with equations from other classes.

– Equations specify the behavior of a class. The way in which the equations
interact with equations from other classes determines the solution process,
i.e. program execution.

– Classes including functions can be members of other classes.

Here is the declaration of a simple class that might represent a point in a three-
dimensional space:

class Point "point in a three-dimensional space"

public Real x;

Real y, z;

end Point;

31

2.2 Inheritance

One of the major benefits of object-orientation is the ability to extend the behav-
ior and properties of an existing class. The original class, known as the superclass
or base class, is extended to create a more specialized version of that class, known
as the subclass or derived class. In this process, the behavior and properties of
the original class in the form of field declarations, equations, and other contents
is reused, or inherited, by the subclass.

Let us regard an example of extending a simple Modelica class, e.g. the class
Point introduced previously. First we introduce two classes named ColorData

and Color, where Color inherits the data fields to represent the color from class
ColorData and adds an equation as a constraint. The new class ColoredPoint
inherits from multiple classes, i.e. uses multiple inheritance, to get the position
fields from class Point and the color fields together with the equation from class
Color.

record ColorData

Real red;

Real blue;

Real green;

end ColorData;

class Color

extends ColorData;

equation

red + blue + green = 1;

end Color;

class Point

public Real x;

Real y, z;

end Point;

class ColoredPoint // Multiple inheritance

extends Point;

extends Color;

end ColoredPoint;

2.3 Equations in Modelica

As we already stated, Modelica is primarily an equation-based language in con-
trast to ordinary programming languages where assignment statements prolifer-
ate. Equations are more flexible than assignments since they do not prescribe a
certain data flow direction. This is the key to the physical modeling capabilities
and increased reuse potential of Modelica classes.

32

Thinking in equations is a bit unusual for most programmers. In Modelica
the following holds:

– Assignment statements in conventional languages are usually represented as
equations in Modelica.

– Attribute assignments are represented as equations.
– Connections between objects generate equations.

Equations are more powerful than assignment statements. For example, consider
a resistor equation where the resistance R multiplied by the current i is equal to
the voltage v:

R*i = v;

This equation can be used in three ways corresponding to three possible assign-
ment statements: computing the current from the voltage and the resistance,
computing the voltage from the resistance and the current, or computing the
resistance from the voltage and the current. This is expressed in the following
three assignment statements:

i := v/R;

v := R*i;

R := v/i;

2.4 The Modelica Notion of Subtypes

The notion of subtyping in Modelica is influenced by a type theory of Abadi
and Cardelli [1]. The notion of inheritance in Modelica is independent from the
notion of subtyping. According to the definition, a class A is a subtype of a
class B if and only if the class A contains all the public variables declared in the
class B, and the types of these variables are subtypes of types of corresponding
variables in B. The main benefit of this definition is additional flexibility in the
definition and usage of types. For instance, the class TempResistor is a subtype
of Resistor, without being a subclass of Resistor.

class Resistor "Ideal electrical resistor"

extends TwoPin;

parameter Real R(Unit="Ohm") "Resistance";

equation

v = R*i;

end Resistor;

model TempResistor

extends TwoPin;

parameter Real R "Resistance at reference Temp.";

parameter Real RT=0 "Temp. dependent Resistance.";

33

parameter Real Tref=20 "Reference temperature.";

Real Temp=20 "Actual temperature";

equation

v = i*(R + RT*(Temp-Tref)); end TempResistor;

Subtyping compatibility is checked when the class is used. If a variable a is of
type A, and A is a subtype of B, then the variable a can be initialized by a variable
of type B.

Note that TempResistor does not inherit the Resistor class. There are
different definition for evaluation of v. If equations are inherited from Resistor

then the set of equations will become inconsistent in TempResistor, since there
would be two definitions of v. For example, the specialized equation below from
TempResistor:

v=i*(R+RT*(Temp-Tref))

and the general equation from class Resistor:

v=R*i

are incompatible. Modelica currently does not support explicitly named equa-
tions and replacement of equations, except for the cases when the equations are
collected into a local class, or a declaration equation is present in a variable
declaration.

2.5 Components

Components are connected via the connection mechanism realized by the Mod-
elica language, which can be visualized in connection diagrams. A component
framework realizes components and connections, and insures that communica-
tion works over the connections. For systems composed of acausal components
the direction of data flow, i.e. the causality, is initially unspecified for connec-
tions between those components. Instead the causality is automatically deduced
by the compiler when needed. Components have well-defined interfaces consist-
ing of ports, also known as connectors, to the external world. These concepts
are illustrated in Fig 3.
Modelica uses a slightly different terminology compared to most literature on
software component systems: connector and connection, rather than port and
connector respectively in software component literature.

In the context of Modelica class libraries software components are Model-
ica classes. However when building particular models, components are instances
of those Modelica classes. A component class should be defined independently
of the environment where it is used, which is essential for its reusability. This
means that in the definition of the component including its equations, only lo-
cal variables and connector variables can be used. No means of communication
between a component and the rest of the system, apart from going via a con-
nector, is then allowed. A component may internally consist of other connected
components, i.e. hierarchical modeling.

34

Component

Interface

Connection Component

Connector

Acausal coupling

Causal coupling

Fig. 3. Connecting two components within a component framework.

2.6 Connectors and Connector Classes

Modelica connectors are instances of connector classes, i.e. classes with the key-
word connector or classes with the class keyword that fulfill the constraints
of connector restricted classes. Such connectors declare variables that are part
of the communication interface of a component defined by the connectors of
that component. Thus, connectors specify the interface for interaction between
a component and its surroundings.

component and its surroundings.

v +

i

pin

Fig. 4. A component with an electrical pin connector; i.e. an instance of a Pin.

For example, class Pin is a connector class that can be used to specify the
external interface for electrical components that have pins as interaction points.

connector Pin

Voltage v;

flow Current i;

end Pin; Pin pin; // An instance pin of class Pin

2.7 Connections

Connections between components can be established between connectors of
equivalent type. Modelica supports equation-based acausal connections, which
means that connections are realized as equations. For acausal connections, the
direction of data flow in the connection need not be known. Additionally, causal

35

connections can be established by connecting a connector with an input attribute
to a connector declared as output.

Two types of coupling can be established by connections depending on
whether the variables in the connected connectors are non-flow (default), or
declared using the prefix flow:

– Equality coupling, for non-flow variables, according to Kirchhoff’s first law.
– Sum-to-zero coupling, for flow variables, according to Kirchhoff’s current

law.

For example, the keyword flow for the variable i of type Current in the Pin

connector class indicates that all currents in connected pins are summed to zero,
according to Kirchhoff’s current law.

according to Kirchhoff’s current law.

pin 1 pin 2
++

ii

v v

Fig. 5. Connecting two components that have electrical pins.

Connection statements are used to connect instances of connection classes. A
connection statement connect(pin1,pin2) with pin1 and pin2 of connector
class Pin, connects the two pins so that they form one node. This produces two
equations, namely:

pin1.v = pin2.v

pin1.i + pin2.i = 0

The first equation says that the voltages of the connected wire ends are the
same. The second equation corresponds to Kirchhoff’s current law saying that
the currents sum to zero at a node (assuming positive value while flowing into
the component). The sum-to-zero equations are generated when the prefix flow

is used. Similar laws apply to flows in piping networks and to forces and torques
in mechanical systems.

3 Discrete Event Programming

Physical systems evolve continuously over time, whereas certain man-made sys-
tems evolve by discrete steps between states. These discrete changes, or events,
when something happens, occur at certain points in time. We talk about dis-
crete event dynamic systems as opposed to continuous dynamic systems directly
based on the physical laws derived from first principles, e.g. from conservation of
energy, matter, or momentum. One of the key issues concerning the use of events

36

for modeling is how to express behavior associated with events. The traditional
imperative way of thinking about a behavior at events is a piece of code that
is activated when an event condition becomes true and then executes certain
actions, e.g. as in the when-statement skeleton below:

when (event_conditions) then

event-action1;

event-action2;

...

end when;

On the other hand, a declarative view of behaviour can be based on equations.
When-equations are used to express equations that are only valid (become active)
at events, e.g. at discontinuities or when certain conditions become true. The
conditional equations automatically contain only discrete-time expressions (see
below) since they become active only at event instants, i.e. at discrete points in
time. Discrete events in Modelica take no time and are based on the synchronous
data flow principle. In fact, the semantics of events can be completely defined in
terms of conditional equations.

when <conditions> then

<equations>

end when;

For example, the two equations in the when-clause below become active at the
event instant when the Boolean expression x > 2 becomes true.

when x > 2 then

y1 = sin(x);

y3 = 2*x + y1+y2;

end when;

So-called discrete-time variables in Modelica only change value at discrete points
in time, i.e. at event instants, and keep their values constant between events. This
is in contrast to continuous-time variables which may change value at any time,
and usually evolve continuously over time, see Fig 6.

3.1 A Simple Discrete Simulation Model

A common example of discrete time simulation is a queuing system serving
customers. We start by first defining a model which generates customers at
random points in time moments. This model calls the function normalvariate

which is a random number generator function (functional, without side effects)
used to generate the time delay until the next customer arrival. Here we only
show the CustomerGeneration class of the total model.

37

timeevent 1 event 2 event 3

y

z

y,z

Fig. 6. A discrete-time variable z changes value only at event instants, whereas
continuous-time variables like y may change value both between and at events.

class CustomerGeneration

Random.discreteConnector dOutput;

parameter Real mean = 0;

parameter Real stDeviation = 1;

discrete Real normalDelta;

discrete Real nextCustomerArrivalTime(start=0);

discrete Random.Seed randomSeed(start={23,87,187});

equation

when pre(nextCustomerArrivalTime)<=time then

(normalDelta,randomSeed)=

normalvariate(mean,stDeviation,pre(randomSeed));

nextCustomerArrivalTime = pre(nextCustomerArrivalTime)

+ abs(normalDelta);

end when;

dOutput.dcon = (nextCustomerArrivalTime <>

pre(nextCustomerArrivalTime); end CustomerGeneration;

Simulate[CustomerGeneration,{t,0,10}]

PlotSimulation[nextCustomerArrivalTime[t],{t,0,10}]

3.2 Game of Life Simulation

Another discrete-event example is a simple model representing Conway’s game
of life. Life is played on a grid of square cells where a cell can be live or dead.
In our example we represent the grid of square cells as a matrix and a live cell
is indicated by placing the value 1 on the corresponding element in the matrix.
Obviously, each cell in the grid has a neighbourhood consisting of the eight cells
in every direction including the diagonals. We simulate the game of life over a
limited time, on a grid of 10x10 with the help of the following model:

38

2 4 6 8 10

time

4

6

8

10
arrival time

2

Fig. 7. Customers generated at random time moments

model GameOfLife

parameter Integer n=10;

parameter Integer initialAlive[:,2]=

{{2,2},{2,1},{1,2},{3,3}};

discrete Integer lifeHistory[n,n](start=zeros(n,n));

equation

initial equation

lifeHistory=

firstGeneration(pre(lifeHistory),initialAlive);

when sample(0,0.1)

lifeHistory =nextGeneration(pre(lifeHistory));

end when;

end GameOfLife;

The simulation starts with an initial generation represented by the
initialAlive parameter which updates the lifeHistory variable in the
initial equation section. This is done by calling the function firstGeneration.

function firstGeneration

input Integer M[:,:];

input Integer I[:,:];

output Integer G[size(M,1),size(M,1)]:=M;

algorithm

for i in 1:size(I,1) loop

G[I[i,1],I[i,2]]:=1;

end for;

end firstGeneration;

At each event, generated by the sample statement, the nextGeneration function
is called which applies the rules of the game to each cell of the grid. To apply one
step of the rule we count the number of live neighbours for each cell. The value
of the cell depends on the number of live neighbours according to the following
rules:

39

– A dead cell with exactly three live neighbours becomes a live cell (birth).

– A live cell with two or three live neighbours stays alive (survival).

– In all other cases, a cell dies or remains dead (overcrowding or loneliness).

The rules of the life game are illustrated by the nextGeneration function:

function nextGeneration

input Integer M[:,:];

output Integer G[size(M,1),size(M,1)];

protected

Integer iW,iE,jN,jS,borderSum;

parameter Integer n=size(M,1);

algorithm

for i in 1:n loop

for j in 1:n loop

iW: = mod(i-2+n, n)+1; iE: = mod(i+n,n)+1;

jN: = mod(j+n, n)+1; jS: = mod(j-2+n,n)+1;

borderSum := M[iW,j] + M[iE,j] + M[iW,jS] + M[i,jS] +

M[iE,jS] + M[iW,jN] + M[i,jN] + M[iE,jN];

if borderSum ==3 then G[i,j]:=1;

elseif borderSum==2 then G[i,j]:=M[i,j];

else G[i,j]:=0;

end if;

end for;

end for;

end nextGeneration;

4 Array Comprehensions in Modelica

Several powerful declarative language constructs are included in Modelica in or-
der to strengthen the use of the language as mathematical specification language.
The Modelica array comprehension language construct allows the selection of ar-
bitrary dimension(s) for iteration where no dimension is treated preferentially
and also allows simultaneous iterations over two or more arrays.

A general syntax for iterating over arrays is given below:

expression for iterator1, ...,iteratorn

This expression will generate an array with n dimensions by evaluating the ex-
pression for each iteration variable value and collect the result into an array.
For example, the expression {i*i for i in 1:5} evaluates to a vector of size
5: {1,4,9,16,25}. In a similar way the following special matrix with 1 at the
diagonal and the rest of the elements equal to the sum of the row and column
index:

40









1 3 4 5
3 1 5 6
4 5 1 7
5 6 7 1









This array can be created using the following code.

{if i=j then 1 else i+j for i in 1:size(A,1),

j in 1:size(A,2) }

The array comprehension can be extended over the predefined Modelica func-
tions: max, min, sum and product, which then act as reduction functions.

Given the function fn(x) =
n

1 + n2
the sum

N
∑

i=1

fn(x) can be expressed in array

comprehension as: where N is a given natural number. Without array compre-
hensions the sum can be expressed by the following function:

function mySum

input Integer N;

output Real result;

algorithm

result:=0;

for i in 1:N loop

result:=result+i/(i+i^2);

end for

5 Modelica Packages

Packages in Modelica may contain definitions of constants and classes including
all kinds of restricted classes, functions, and subpackages. By the term subpack-
age we mean that the package is declared inside another package, no inheritance
relationship is implied. Parameters and variables cannot be declared in a pack-
age. The definitions in a package should be related in some way, which is the
main reason they are placed in a particular package. Packages are useful for
number of reasons:

– Definitions that are related to some particular topic are typically grouped
into a package. This makes those definitions easier to find and the code more
understandable.

– Packages provide encapsulation and coarse-grained structuring that reduces
the complexity of large systems. An important example is the use of packages
for construction of (hierarchical) class libraries.

– Name conflicts between definitions in different packages are eliminated since
the package name is implicitly prefixed to names of definitions declared in a
package.

41

– Information hiding and encapsulation can be supported to some extent by
declaring protected classes, types, and other definitions that are only avail-
able inside the package and therefore inaccessible to outside code.

– Modelica defines a method for locating a package by providing a standard
mapping of package names to storage places, typically file or directory loca-
tions in a file system.

– Identification of packages. A package stored separately, e.g. on a file, can be
(uniquely) identified.

As an example, consider the package ComplexNumbers which contains a data
structure declaration, the record Complex, and associated operations such as Add,
Multiply, MakeComplex, etc. The package is declared as encapsulated which is
the recommended software engineering practice.

encapsulated package ComplexNumbers

record Complex ...

function Add ...

function Multiply ...

end ComplexNumbers;

The example below presents a way how one can make use of the pack-
age ComplexNumbers, where both the type Complex and the operations
Multiply and Add are referenced by prefixing them with the package name
ComplexNumbers.

class ComplexUser

ComplexNumbers.Complex a(x=1.0, y=2.0);

ComplexNumbers.Complex b(x=1.0, y=2.0);

ComplexNumbers.Complex z,w;

equation

z = ComplexNumbers.Multiply(a,b);

w = ComplexNumbers.Add(a,b);

end ComplexUser;

Since classes can be placed in packages, and packages is a restricted form of
class, Modelica allows packages to contain subpackages, i.e. packages declared
within some other package. This implies that a package name can be composed
of several simple names appended through dot notation, e.g. ”Root package”.”
Package level two”.” Package level three”, etc. Typical examples can be found
in the Modelica standard library, where all level zero subpackages are placed
within the root package called Modelica. This is an extensive library containing
predefined subpackages from several application domains as well as subpackages
containing definitions of common constants and mathematical functions. A few
examples of names of subpackages in this library follow here:

Modelica.Mechanics.Rotational.Interfaces

Modelica.Electrical.Analog.Basic Modelica.Blocks.Interfaces

42

The equation-based foundation of the Modelica language enables simulation in
an extremely broad range of scientific and engineering areas. For this reason an
extensive Modelica base library is under continuous development and improve-
ment being an intrinsic part of the Modelica effort (see www.modelica.org).
Some of the model libraries include application areas such as mechanics, elec-
tronics, hydraulics , heat flow, etc.. These libraries are primarily intended to
tailor Modelica toward a specific domain by giving modelers access to common
model elements and terminology from that domain.

6 Acknowledgements

The authors would like to thank the other members of the Modelica Association
for inspiring discussions and their contributions to the Modelica language design.
Modelica 2.0 was released February 15, 2002. The Modelica Association was
formed in Linkping Sweden, at Feb. 5, 2000 and is responsible for the design of
the Modelica language (see www.modelica.org).

We also thank the entire MathModelica team from MathCore AB [12] and
the Dymola team at Dynasim [10], as well as our colleagues at PELAB - the
Programming Environment Laboratory [11], without whom this work would not
have been possible.

References

[1] Abadi M. and L. Cardelli, A Theory of Objects, Springer Verlag, ISBN 0-387-94775-
2, 1996.

[2] Elmqvist, H.; S. E. Mattsson and M. Otter. 1999. ”Modelica - A Language for
Physical System Modeling, Visualization and Interaction.” In Proceedings of the
1999 IEEE Symposium on Computer-Aided Control System Design (Hawaii, Aug.
22-27).

[3] Fritzson, P.; P. Bunus ”Modelica, a general Object-Oriented Language for Contin-
uous and Discrete-Event System Modeling and Simulation.” In Proceedings of the
35th Annual Simulation Symposium (San Diego, California, April 14-18, 2002)

[4] Fritzson, P. ”Introduction to Modelica”. First chapter of book draft.
www.ida.liu.se/ pelab/modelica

[5] Fritzson P.; J. Gunnarsson; M. Jirstrand. ”MathModelica - An Extensible Model-
ing and Simulation Environment with Integrated Graphics and Literate Program-
ming.” In Proceedings of the 2nd International Modelica Conference (18-19 March,
Munich Germany, 2002)

[6] Fritzson P and V. Engelson. ”Modelica, A Unified Object-Oriented Language for
System Modeling and Simulation.” In Proceedings the 12th European Conference
on Object-Oriented Programming(ECOOP’98). (Brussels, Jul. 20-24,1998).

[7] Modelica Association. Modelica - A Unified Object-Oriented Language for Physi-
cal Systems Modeling - Tutorial and Design Rationale Version 1.4 (December 15,
2000). http://www.modelica.org

[8] Modelica Association. Modelica - A Unified Object-Oriented Language for Physi-
cal Systems Modeling - Language Specification Version 1.4. (December 15, 2000).
http://www.modelica.org

43

[9] Tiller M. Introduction to Physical Modeling with Modelica. Kluwer Academic Pub-
lishers, 2001.

[10] http://www.dynasim.se - Dymola and Dynasim AB, Sweden.
[11] http://www.ida.liu.se/ pelab/Modelica - research site related to the Modelica

language and the Modelica Open Source project.
[12] http://www.mathcore.se MathModelica and MathCore AB, Sweden.

44

The Return of Jensen’s Device

Timothy A. Budd

Department of Computer Science
Oregon State University
Corvallis, Oregon, USA

Abstract. In the early 1990’s my students and I developed Leda, a
multiparadigm language based on the Pascal model. Leda allowed pro-
grammers to create abstractions in an object-oriented, functional, or logic
programming style. More recently we have been interested in expanding
this work, but this time using Java as the language basis. The objective
to to add as few new operations as possible, and to make these opera-
tions seem as close to Java as possible, so that they seem to fit naturally
into the language. To date we have implemented facilities for functions as
first-class values, pass-by-name parameters, ML style pattern matching,
and for relational (or logic) programming. In addition, we are currently
evaluating a number of other extensions to the language.

1 Introduction

In the book Multiparadigm Programming in Leda [7], I described a multiparadigm
programming language based on the Pascal model. My students and I purposely
selected Pascal for our foundation language because we wanted a syntax that
would be non-intimidating to most users, particularly beginning programmers.
By adding only a few simple features (functions as values, nameless or lambda
functions, relations) we were able to demonstrate how applications could be
developed in a functional style, in a Prolog logic-programming style, or in an
object-oriented style. Furthermore, a synergy quickly develops between the dif-
ferent paradigms, and a great deal of power derives from combining code written
in two or more styles in a single program.

As Java has slowly become the dominant language in the academic world, we
have become interested in the question of whether or not it would be possible to
add similar features to Java. Many experiments in this area have already been
tried. The best known multiparadigm version of Java is Pizza [21]. However, we
felt that Pizza (and other similar languages) suffered from one fault that we had
taken pains to avoid in the original design of Leda. This was that the additions
did not remain true to what James Gosling calls the feel of the language [14].
With Pizza it is far too easy to tell when you leave Java and start programming
in Pizza. We wanted something that was more subtle, so that the features seem
to flow naturally into the existing Java syntax, without clear-cut boundaries.
The reader will have to judge for themselves whether or not we have achieved
our goal.

45

In this paper we will describe five major modifications we have introduced
into J/mp, our extended Java language. These additions are:

– First class Functions. Functions as values, arguments, and results. Nameless
functions created as expressions.

– Pass-by-name parameters. A technique for bidirectional information flow
through parameters, and for delaying the evaluation of an argument until it
is used (lazy evaluation).

– Operator overloading. Mostly just syntactic sugar used to reduce the size of
a program and make it easier to read.

– Pattern Matching. We have extended the instanceof operator so that in ad-
dition to testing the dynamic class of an expression, it also breaks a value
that was constructed using composition into its component parts.

– The relation as a data type, and Prolog-style relational programming. As we
did with Leda, this feature is constructed by combining the above features
with a library of operations that implement logic programming tasks such
as backtracking and unification.

In the remainder of the paper we will describe each of these elements in turn.

1.1 Pass by Name

We began with the assumption that we would need to support functions as first
class data types, similar to those found in Pizza. As with Brew [3], and unlike
Pizza, the syntax we adopted is closer to the historical C/C++ model, and is to
our eyes more in keeping with the feel of Java. Several examples will subsequently
be presented.

The next observation was that we needed at least one more parameter passing
mechanism, in addition to Java’s approach of passing object references by value.
In particular, for many of the applications we envisioned it was desirable to be
able to pass information both into and out of a method or function by means
of parameters, as well as a means to delay the evaluation of arguments. After
considering many of the possibilities (for example, by-reference, copy in-copy
out), we arrived at what might be a rather surprising conclusion. The parameter
passing mechanism most suited to our purposes was an old and nowdays seldom
used technique, pass-by-name [20].

In large part, this decision was influenced by the fact that pass-by-name
fits quite easily into the object-oriented philosophy, and hence there is a simple
technique for implementing the mechanism. We will describe this in Section 2.

The classic example used to illustrate the effect of pass-by-name parameters is
Jensen’s device, a procedure for taking a simple sum of a collection of values [11].
(Named after Jørn Jensen, who first explored its properties). Our first version of
Jensen’s device is shown in Figure 1, together with a class that illustrates how
it can be invoked. The intent that the first and third arguments to the function
Jensen are to be passed by name is indicated by the plus sign preceding the type.
Each time the variable i is modified the corresponding actual parameter in the

46

public double Jensen(+int i, int max, +double x) {

double sum = 0.0;

for (i = 0; i < max; ++i)

sum += x;

return sum;

}

class Main {

static double [] data = {1.5, 2.7, 3.2, 4.1, 5.2, 6.3};

static public void main (String [] args) {

int i;

System.out.println("Sum " + Jensen(i, 6, data[i]));

System.out.println("Sum of odds " + Jensen(i, 3, data[1+2∗i]));

}

}

Fig. 1. Jensens Device, Version 1

calling procedure will be changed. The fact that x is passed by name means that
the evaluation of this parameter is delayed until the point where it is used, in
the body of the loop. Furthermore, each time it is used, the actual argument is
reevaluated.

The sample main program shows how this can be used to compute the sum
of an array, or alternatively the sum of the odd-indexed elements in an array.
By varying the parameters passed to Jensen’s device a wide variety of behav-
iors can be produced [17]. For example, although seemingly generating only a
one dimensional summation, a summation of a two dimensional array could be
obtained as follows:

Jensen(i, n, Jensen(j, m, a[i][j]));

Similarly, a dot product of two vectors could be computed as:

Jensen(i, n, a[i]∗b[i]);

1.2 Free Standing Functions

Figure 1 also illustrates the syntax used for free standing functions; that is,
functions not associated with any class. As with Pizza, Brew, and similar systems
such functions are ultimately first turned into an interface, and then into a class.
Later in Section 2 we will show the transformation of this function.

47

1.3 Functions as Values

Many people dislike pass-by-name, although we view its bad reputation is being
largely undeserved. Nevertheless, a number of the interesting things one can do
with pass-by-name can also be accomplished using functions as first class values.
(This is not surprizing. The implemenation of pass by name can in a certain sense
be considered a special case of functions as arguments). Our second version of
Jensen’s device (Figure 2) illustrates this. Here there are two formal parameters,
the first an integer and the second a function that takes an integer as argument
and returns a double. The loop repeatedly invokes the function in order to yield
different values.

public double Jensen(int max, double (int) f) {

double sum = 0.0;

for (int i = 0; i < max; i++)

sum += f(i);

return sum;

}

class Main {

static double [] data = {1.5, 2.7, 3.2, 4.1, 5.2, 6.3};

static public void main (String [] args) {

System.out.println("Sum of odds " +

Jensen(3, double (int j) { return data[1+2∗j];}));

}

}

Fig. 2. Jensens Device, Version 2

The syntax used to define the type field of the function parameter largely
mirrors the standard Java syntax for function prototypes, although the param-
eter names are omitted. The invocation (in the method main) illustrates the
creation of a nameless function argument. Such arguments are often termed
lambda expressions, a term adapted from the lambda calculus. Alternatively, a
named function could have been passed as argument to Jensen, although not a
named method (functions are first class values, methods are not).

A function that implements a curry illustrates the three common uses for
function values; these are functions as arguments, functions as return types, and
the creation of an anonymous function value:

int(int) curryLeft (final int left, final int(int, int) theFun) {
return int(int right) { return theFun(left, right); };

}

48

Note that it has been necessary to declare the arguments as final in order for
them to be captured in the context for the function. Also notice that the syntax
for functions in J/mp requires no additional keywords or operators, and that,
like Brew [3], our syntactic extensions are very similar to existing features in the
Java language. The value curryLeft could itself be saved in a variable declared as
follows:

int(int)(int, int(int, int)) c = curryLeft;

1.4 Infinite Length Lists

Functions as first class values have many interesting and unusual uses. A good
example is the creation of lazy lists; lists that use lazy evaluation and hence do
not calculate their elements until needed. Such lists can be used to represent
collections that are infinite in length. A simple definition of a lazy list in which
each element is computed as a transformation on the prior value can be written
as follows:

class Ilist {
private int hd; // current value

private int(int) tf; // transformation function

public Ilist (int h, int(int) t) { hd = h; tf = t; }

public int head () { return hd; }
public Ilist tail () { return Ilist(tf(hd), tf); }

}

Some would argue that this class is not only lazy but stupid, in that it reeval-
uates its elements each time a request is made. An alternative, more traditional,
lazy list that delays evaluation until necessary, but thereafter remembers val-
ues that it has already computed, can be written but is not as concise. Using
this class definition, the list containing all natural numbers can be generated as
follows:

Ilist naturals = Ilist(0, int(int x) { return x+1; });

One feature to note is the lack of the new operator in this expression. If a
class name is used in the fashion of a function, an implicit creation is assumed.

Slightly more complicated is the list of all prime numbers. A straightforward
algorithm for computing these is the following:

Ilist primes = Ilist(2, int(int x) {boolean flag = true;
while (flag) { flag = false; x++;

for (int y = 2; (y ∗ y <= x) && ! flag; y++)

49

flag = (x%y==0);
}

return x; });

Many interesting effects can be achieved by manipulating infinite length lists,
and developing functions that will filter or transform elements from such lists [7].

1.5 Pattern Matching

The language ML popularized a style of programming where compound data
values were created by means of constructors, and then broken back into their
constituent parts by means of pattern matching. The following ML definitions
and function illustrate this behavior:

datatype Tree =
Leaf of int
| Node of int ∗ Tree ∗ Tree;

val t = Node(3, Node(4, Leaf(5), Leaf(7)), Leaf(2));

fun sum(Leaf(v)) = v
| sum(Node(v, left, right)) = v + sum(left) + sum(right);

Constructors in Java serve much the same purpose as constructors in ML.
This is particularly true given that we have made the new keyword optional,
as previously described. A Java class definition similar to the ML code can be
written as in Figure 3. Given this definition, we can construct a tree as follows:

Tree t = Node(3, Node(4, Leaf(5), Leaf(7)), Leaf(2));

While constructors serve the same purpose in Java and ML, there did not
seem to be a good substitute in Java for pattern matching. In pondering the
possibilities, and remembering our goal of maintaining the spirit of Java and
making minimal changes to the language, we determined that the closest oper-
ation to pattern matching in the existing language was the instanceof operator.
By simply adding an optional argument list to this operator we could make it
serve the dual purposes of type testing and deconstruction.

t instanceof Node(value, left, right)

But how to provide semantics to the pattern matching operation? We initially
sought to implement this operation outside of the class being tested. However,
it is common for Java programmers to protect their data fields, as with the data
fields value, left and right in Figure 3. Therefore a compound object represented
as an instance of a class cannot easily be broken into its original parts outside

50

class Tree {

protected int value;

}

class Leaf extends Tree {

public Leaf (int v) { value = v; }

public Leaf$ (+int v) { v = value; }

}

class Node extends Tree {

private Tree left, right;

public Node (int v, Tree l, Tree r) { value = v; left = l; right = r; }

public Node$ (+int v, +Tree l, +Tree r) { v = value; l = left; r = right; }

}

Fig. 3. Class Definitions for a Binary Tree

of the class definition. For this reason we decided the author of the class must
be directly involved in the pattern matching operation. A compound instanceof
operator will internally be converted into a type test which, if successful, will
invoke the deconstructor method. A deconstructor is written as the name of the
class followed by a dollar sign, as shown in Figure 3. Typically the deconstructor
uses by-name parameters to pass the values back to the operator invocation.
(For an alternative approach to pattern matching in a Java extension, see [21].)

The following function computes the sum of the values in a binary tree, and
illustrates the use of the pattern matching operations.

public int sum (Tree t) {
int value;
Tree left, right;
if (t instanceof Node(value, left, right))

return value + sum(left) + sum(right);
else if (t instanceof Leaf(value))

return value;
return 0;

}

1.6 Operator Overloading

Each of the standard operators is assigned a textual name (plus for +, times
for *, and so on). If the left argument to a standard operator is a class type,
then a search will be performed in this class to see if a method has been defined
using this textual name, and with a type signature that matches the right ar-
gument. If such a method is found then the operator is turned into a standard

51

method invocation. We will see an example of this in the next section. This is
the technique we used previously in Leda [7], as well as other languages, such as
Python [4]. It is also in keeping with a proposed change to Java [13].

1.7 Logic Programming

The combination of by-name parameter passing and functions as values permits
a simple implementation of logic programming. Students often have very limited
exposure to this useful programming style; often viewing it as merely an obscure
practice found only in marginal languages, such as Prolog [10]. Logic program-
ming is sometimes termed relational programming, and a classic example is a
database of family relations.

Logic programming in J/mp is provided using a supporting class named
Relation. A relation can be thought of as a generalization of booleans, however the
more accurate class definition is shown in Figure 4. The fundamental operation
on a relation is apply, which takes as argument another relation, and returns
a boolean which indicates that both the receiving relation and the argument
relation can be satisfied.

Another fundamental operation with relations is the unification operator,
named unify. Unify has two jobs. If both arguments are defined, it ensures that
they are equal before testing the relation it is given. Otherwise, if the first ar-
gument is undefined, it is set to the second, and then the argument relation
is tested. If the argument (the continuation) fails, the assignment is undone,
and the unification fails. (Technically, this is not as general as the Prolog style
unification, where either or both arguments can be undefined. However, it is
sufficient for most purposes, and if desired the more general operation can be
written using this simpler version as a basis).

An example to illustrate how these operations can be used is the following:

private static Relation eq(+String a, String b) { return Relation.unify(a, b); }

public static Relation progeny(+String f, +String m, +String c) {
return (eq(f, "Albert") && eq(m, "Victoria") && eq(c, "George"))
|| (eq(f, "George") && eq(m, "Elizabeth") && eq(c, "Elizabeth"))
|| (eq(f, "Phillip") && eq(m, "Elizabeth") && eq(c, "Charles"))
|| (eq(f, "Charles") && eq(m, "Diana") && eq(c, "William"))
|| (eq(f, "Charles") && eq(m, "Diana") && eq(c, "Henry"));

}

Here the method eq simply provides a convenient shorthand for the invocation
of the unification method. The method progeny is a typical logic programming
database. It takes three by-reference parameters; representing a father, mother
and child in the progeny relationship.

Queries in the logic programming style in J/mp are driven by either an if or a
while statement. The conditional if seeks a single solution to a given query, while

52

class Relation {

public boolean apply (Relation continuation) { return true; }

public boolean asBoolean() { return apply(new Relation()); }

public static Relation unify (+Object left, final Object right) {

return new Relation () {

public boolean apply (Relation continuation) {

if (left == null) {

left = right;

if (continuation.apply(new Relation())) return true;

left = null;

} else if (right != null) {

return left.equals(right) && continuation.apply(new Relation());

}

return false;

}

};

}

public Relation and (+Relation right) {

final Relation me = this;

return new Relation () {

public boolean apply (final Relation continuation) {

return me.apply(new Relation() {

public boolean apply(Relation r) {

return right.apply(continuation);

}

});

}

};

}

public Relation or (+Relation right) {

final Relation me = this;

return new Relation () {

public boolean apply (final Relation continuation) {

return me.apply(continuation) || right.apply(continuation);

}

};

}

}

Fig. 4. Definition of Relation

53

the looping while statement seeks all possible bindings. If the actual arguments
are already defined they are used as a pattern, and if not defined they are set
by the call on the relation. Assuming that a and b are variables of type String
that are initially null, the name of a single child of Phillip, for example, could
be determined as follows:

if (progeny("Phillip", a, b))

System.out.println("child of Phillip " + b);

A characteristic of logic programming is that the same parameters sometimes
serve as input and other times as output. For example, the father of Charles can
be determined as follows:

if (progeny(c, d, "Charles"))

System.out.println("father of Charles " + c);

A while statement can be used to cycle through all bindings of the argument
values, as follows:

while (progeny("Charles", "Diana", e))

System.out.println("children of Charles and Diana " + e);

New relations are easily defined using existing relations. The definitions for
parentOf and grandParentOf, for example, are as follows:

public static Relation parentOf (+String p, +String c) {

String a; // either father or mother

return progeny(p, a, c) || progeny(a, p, c);

}

public static Relation grandParentOf (+String g, +String c) {

String a;

return parentOf(g, a) && parentOf(a, c);

}

Using these one could discover, for example, the grandparent of William using
a query such as the following:

if (grandParentOf(f, "William"))

System.out.println("grand Parent of William " + f);

It is also easy to integrate conventional boolean expressions with relations,
however the details are not shown here.

54

2 Implementation

Like Pizza and other similar systems [2, 3, 6, 12, 19, 21], J/mp is implemented as
a source to source translation system. That is, J/mp programs are first processed
into equivalent Java programs, which are then compiled using the standard Java
system. In this section we will describe the most significant features of this
transformation process.

As was done by the developers of the Pizza system, a function type is rep-
resented internally as an interface. A mangling algorithm is used to convert the
function type signature into a unique name. (A technique that historically has
been used in many different languages [15]). The following, for example, rep-
resents a function that takes an integer as argument, and returns a double as
result:

interface double int {
public double call (int $0);

}

The simple signature encoding algorithm we use is adequate for primitive
types, and for most class types, which are represented simply by the class name.
It is legal for a Java program to contain two identically named classes, as long as
they come from different packages. This would potentially cause problems with
finding unique names, but such examples do not appear to arise in practice.

Similarly, one might believe there there could be a subtle interaction between
inheritance and assignment of function values (the covarient and contravariant
issue for method overriding but now appearing in a different guise). For example,
assuming that class Child is a subclass of Parent, would it ever make sense to
to assign a function with type signature void(Child) to a variable declared as
maintaining void(Parent), or vice versa? Fortunately, it is easy to show that such
an action, if allowed, could potentially result in non-detectable type errors. This
being so, the fact that this behavior is ruled out by the simple expedient of type
signature encoding is a benefit, and not a problem.

Using the conversion of function types to interfaces, the second version of
Jensen’s device (Figure 2) is translated internally into the following Java defini-
tion:

public class Jensen implements double int double int {
public double call (int max, double int f) {

int i;
double sum = 0.0;
for (i = 0; i <max ; i++)

sum += f.call(i);
return sum ;

}
}

55

The use of the interface means that any function that takes an integer as
argument and returns a double (that is, any class that implements the interface
double___int) can be passed as argument to this function.

By-name parameters are implemented by means of an intermediary object
that is responsible for accessing and setting a value. In the context of parameter
passing such an object is traditionally known as a Thunk [16]. A portion of the
definition of class Thunk is as follows:

class Thunk {
public Object get() { return null; }
public Object set(Object x) { return null; }

public int getInt() { return 0; }
public int setInt(int a) { return a; }
public double getDouble() { return 0.0; }
public double setDouble(double a) { return a; }
...//

}

(As an alternative we could have implemented different classes, one for each
primitive data type, but instead elected to define just a single class for all values).
Using this class, the implementation of our first definition of Jensens device
(Figure 1) is as follows:

public class Jensen implements double $int int $double {
public double call (Thunk i, int max, Thunk x) {

sum = 0.0 ;
for (i.setInt(0); i.getInt()<max ; i.setInt(i.getInt()+1))

sum +=x.getDouble();
return sum ;

}
}

The majority of work involved in passing parameters by-name is incurred on
the calling side, which must create the Thunk:

class Main {
static double [] data = {1.5 ,2.7 ,3.2 ,4.1 ,5.2 ,6.3 };

static public void main (String [] args) {
class Context$2 {

int i;
}
final Context$2 context$3 = new Context$2() ;
System .out .println ("Sum " + new Jensen ().call (new Thunk() {

56

public int getInt () { return context$3 .i ; }
public int setInt (int ThunkVar$4) {

return context$3.i = ((int) (ThunkVar$4));
} } ,6 ,new Thunk() {
public double getDouble () {

return data [context$3.i];
} }));

}
}

An anonymous inner class is used to create the Thunk. Since anonymous
classes in Java do not capture their complete surrounding environment [1] (that
is, they are not true closures), it is necessary to create our own data type to
maintain the context needed by the Thunk. For this purpose we define an inner
class (here named Context$2) and replace all references to the local variable
with references to the context. The anonymous Thunk class then redefines the
appropriate get and set methods. If a non-assignable expression is passed as
argument only the get method is defined, so that a set on the corresponding
formal parameter will have no effect.

Nameless function values (lambda functions) are also implemented using the
ability for Java to form anonymous inner classes. Like thunks, they must also
capture their surrounding environment in a closure. The main function used in
the second Jensen program, for example, is implemented as follows:

class Main {
static double [] data = {1.5 ,2.7 ,3.2 ,4.1 ,5.2 ,6.3 };

static public void main (String [] args) {
System .out .println ("Sum of odds " +new Jensen().call(3,
new double int () {

public double call (int j) { return data[1 +2 ∗j]; }
}));

}
}

Pattern matching is implemented using the existing instanceof operator, type-
casting and message passing. Deconstructors are converted into a method that
returns boolean true, while a statement such as:

t instanceof Node(value, left, right)

is converted into

(t instanceof Node) && ((Node) t).Node$(value, left, right)

57

The backtracking mechanism used by the logic programming system is pro-
vided entirely by the methods and and or, shown earlier in Figure 4. (A detailed
explanation of how these less-than-obvious functions actually operate can be
found in [7]). To convert a relation to a boolean in the context of an if state-
ment, it is only necessary to append an invocation of asBoolean. In this fashion
an if statement described earlier in the paper is translated into:

if (progeny(c, d, "Charles").asBoolean())
System.out.println("father of Charles " + c);

(This is ignoring the creation of Thunks for the parameters c and d, which is
a separate operation). The transformation of a while statement is more complex.
The statement portion of the loop is transformed into a relation that always fails,
which is then passed to the test portion. Since the relation fails, the backtracking
system will automatically cycle through all possibilities. Ignoring the creation of
Thunks, the while loop given in the earlier discussion of logic programming is
implemented as follows:

progeny("Charles", "Diana", e).apply (new Relation() {
public boolean apply (Relation w) {

System.out.println("children of Charles and Diana" + e);
return false;
}});

An unfortunate side effect of this approach is that return statements cannot
be used within such a loop, as the control would transfer out of the method inside
the artificially generated nested class, and not out of the original surrounding
function.

An alternative approach to implementing Prolog in Java is given by En-
gel [12].

3 Future Investigations

More than just a static language, we view J/mp as a framework for experimenting
with language features. J/mp is implemented using the antlr compiler-compiler
generation system1. J/mp files are first converted into the standard antlr tree-
based representation; then transformations are performed at the intermediate
representation level, before transforming the tree back into a conventional Java
program. This allows for an extremely flexible and efficient system, making it
easy to incorporate new changes.

A considerable percentage of the current effort involves improving the im-
plementation. Two examples of this are final detection and closure elimination.
Parameter values will be captured automatically in closures if they are declared

1 See www.antlr.org.

58

as final, but programmers seldom bother with this modifier. If we can determine
when a parameter can be so declared we can automatically insert the modifier.
Similarly we need to refine our algorithm for determining when closures are nec-
essary; the current algorithm is overzealous, creating them even when they are
not needed.

In addition to finding novel uses for the programming mechanisms we have
described in this paper, there are a large number of alternative programming
features we are considering, to determine if they meet our requirements for utility
and maintaining the feel of the language. These include the following:

– The addition of generics [6]. Generic classes will be included in the next
release of Java (version 1.4). Our interest is in the effect of generics on free
standing functions, and the use of bounded generics.

– Type inference. It is sometimes annoying to have to declare and type vari-
ables when they appear in expressions, particularly if they are assigned only
once. So it would be useful if the system could in some cases infer the type of
otherwise undeclared variables. One current modest proposal is to combine
this feature with the final keyword, so that an assignment such as

final x = expression

would have a type determined from the expression part, and not need an
explicit type declaration.

– Retroactive abstraction by on-the-fly generation of adapters (sometimes
known as structural subtyping). Oftentimes it is necessary to combine two
class hierarchies that have a similar interface, but do not explicitly share a
common ancestor.

class OpenLookObject {
public void display () { ... }
public int move (int x, int y) { ... }

}

class MotifObject {
public void display () { ... }
public int move (int x, int y) { ... }

}

This can be addressed by first creating an interface for the common opera-
tions:

interface XWindowsObject {
public void display ();
public int move (int x, int y);

}

59

We may not be allowed to change the original classes. However, when an
instance of the original class is assigned to a variable declared as the interface,
we can implicitly construct an adapter. That is, in place of:

OpenLookObject v = new OpenLookObject();
...

XWindowsObject xojb = v;

We can generate:

final OpenLookObject $save = v; // necessary to save context

XWindowsObject xobj = new XWindowsObject() {
public void display () { $save.display(); }
public int move (int x, int y) { return $save.move(x, y); }
}

– Mixins. Conventional classes provide inheritance of behavior and polymor-
phic assignment (the assignment of a child value to a parent variable). Inter-
faces provide polymorphic assignment, but no inheritance of behavior. The
third option is the inheritance of behavior, but no assumption of assignabil-
ity. Such a feature is termed a mixin [5]. (A mixin is in this sense very similar
to a private inheritance in C++ [8]). Our proposal is to add a third category
of modifier to the class heading, incorporates. A class that incorporates from
one or more classes will inherit behavior, but not be allowed any rights of
substitution:

class A extends B incorporates C implements D {
... // inherits behavior from both B and C

}

B b = new A(); // allowed

D d = new A(); // allowed

C c = new A(); // not allowed

To implement this feature in current Java an instance of C would be created
within each instance of A, and the invocation of methods inherited from C
would be implemented in A using this object. Difficulties are dealing with
constructors, and the possibility that A might want to override methods
inherited from C. The latter can be handled using inner classes, although
the details are somewhat complicated.

– Automatic boxing and unboxing. Primitive types (integer, real and so on)
are not true objects in Java. Thus when objects are required (for example,
in a data structure) such values must be wrapped in a special class, such
as Integer. The language C# hides this requirement from the user, by auto-
matically boxing primitive values as objects when necessary, and unboxing
them back into primitives when no longer required [18]. We are exploring
how difficult it would be to add this feature to Java.

60

– Multimethods. Although the receiver is used for dynamic dispatch in Java, it
is the static type of argument values that determine the method binding in
an overloaded method. If Child is a subclass of Parent, the following, perhaps
surprisingly, will execute the parent method both times, instead of the child
method in the second instance:

class Test {
public void test (Parent p) { ... }
public void test (Child c) { ... }

public void main () {
Parent a = new Parent();

Parent b = new Child();

test(a);

test(b); // dynamic type has no effect

}
}

Our proposal is to allow methods with compatible argument type signatures
to be combined using the vertical bar (the or operator). Subsequent methods
would omit any modifiers or return type, which are not allowed to change.

class Test {
public void test (Parent p) { ... }
| test (Child c) { ... }
...

}

The first method would be augmented with the addition of dynamic dis-
patching code, while the remaining methods are translated as normal. This
allows subclasses to override the behavior of such methods, something that
is not always possible in other schemes that have been proposed for handing
multimethods [3, 9, 21].

– Open classes. Craig Chambers recently described a technique to help circum-
vent the problem that classes permit easy extension through the addition of
new datatypes, while functions permit easy extension through the addition
of new operations [9]. His technique allows the addition of new methods to
existing classes, using a method heading syntax similar to the following:

void Point.print() { ... }
void ColoredPoint.print() { ... }

Dispatch on such functions is more complicated than either dispatch on
regular methods or dispatch on functions, but appears to be manageable.

61

4 Conclusions

In this paper we have introduced J/mp, which is a multiparadigm extension
to Java designed to support programming in the functional and logic program-
ming styles, in addition to the object-oriented style of Java. As with our earlier
language Leda [7], our goal in developing J/mp has been to support a natural
syntax that requires minimal additions to the base language, and retains the
important feel of the original language. Of course, “natural” and “feel” are sub-
jective terms, and hence an evaluation of our success or failure will only come
with experience in developing systems using our language extensions.

Currently, J/mp extends Java through the addition of the following facilities:

– Functions as first class values.
– By-name parameters.
– Operator overloading.
– Pattern matching.
– A library for relational (or logic) programming.

Current efforts involve work on the implementation, exploring novel uses for
these language features, and exploring new language features that might expand
the flexibility or expressiveness of the language, while maintaining the feel of the
original Java.

Further information on J/mp, including source code and in-
stallation instructions, are available on the authors web site
http://www.cs.orst.edu/∼budd/jmp.

References

[1] Ken Arnold, James Gosling and David Holmes, The Java Programming Language,
3rd Edition, Addison-Wesley, Reading, MA, 2000.

[2] Jonathan Bachrach and Keith Payford, “The Java Syntactic Extender”, Sigplan
Notices, 36(11): 31-42, November 2001.

[3] Gerald Baumgartner, Martin Jansche, and Christopher D. Peisert, “Support for
Functional Programming in Brew”, Proceedings of the 2001 workshop on Multi-
paradigm Programming with Object-Oriented Languages, John von Neumann In-
stitute for Computing, Jülich, Germany, 2001.

[4] David M. Beazley, Python Essential Reference, New Riders Publishing, Indianapo-
lis, IN, 2000.

[5] Gilad Bracha and William Cook, “Mixin-Based Inheritance”, Proceedings of
the 1986 OOPSLA—Conference on Object-Oriented Programming Systems, Lan-
guages and Applications; Reprinted in Sigplan Notices, 25(10): 347–349, 1990.

[6] Gilad Bracha, Martin Ordersky, David Stoutamire, Philip Adler, “Making the Fu-
ture Safe for the Past: Adding Genericity to the Java Programming Language,” in
Proceedings of the 1998 ACM Conference on Object-Oriented Programming Sys-
tems, Languages, and Applications, 1998, reprinted as Sigplan Notices, 33(10):183-
200, October 1998.

[7] Timothy A. Budd, Multiparadigm Programming in Leda, Addison-Wesley, Read-
ing, MA, 1995.

62

[8] Timothy A. Budd, An Introduction to Object-Oriented Programming, 3rd Edition,
Addison-Wesley, Reading, MA, 2002.

[9] Curtis Clifton, Gary Leavens, Craig Chambers, and Todd Millstein, “MultiJava:
Modular Symmetric Multiple Dispatch and Open Classes for Java,” in Proceed-
ings of the 2000 ACM Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications, 2000.

[10] William F. Clocksin and Chistopher S. Mellish, Programming in Prolog, Springer-
Verlag, Berlin, 1981.

[11] Edsger W. Dijkstra, “Defense of ALGOL 60,” Communications of the ACM,
4(11):502-503, November 1961.

[12] Joshua Engel, Programming for the Java Virtual Machine, Addison-Wesley, Read-
ing, MA, 1999.

[13] James Gosling, “The evolution of numerical computing in Java,” Sun Microsys-
tems Laboratories, http://java.sun.com/people/jag/FP.html.

[14] James Gosling, “The Feel of Java”, talk at 1996 ACM Conference on Object-
Oriented Programming Languages and Applications, 1996.

[15] Richard G. Hamlet, “High-level Binding with Low-Level Linkers,” Communica-
tions of the ACM, 19:642-644, November 1976.

[16] Peter Zilahy Ingerman, “Thunks”, Communications of the ACM, 4(1):55-58, 1961.
[17] Donald E. Knuth, “The Remaining Troublespots in Algol 60”, Communications

of the ACM, 10(10):611-617, 1967.
[18] Stanley B. Lippman, C# Primer, Addison-Wesley, Reading, MA, 2002.
[19] Sean McDirmid, Matthew Flatt, Wilson Hsieh, “Jiazzi: New-Age Components

for Old-Fashioned Java,” in Proceedings of the 2001 ACM Conference on Object-
Oriented Programming Systems, Languages, and Applications, 2001.

[20] Peter Naur et al. “Report on the Algorithmic Language Algol 60”, Communica-
tions of the ACM, 6(1):1-17, 1963.

[21] Martin Ordersky and Philip Wadler, “Pizza into Java: Translating Theory into
Practice”, Proceedings of the 24th ACM Symposium on Principles of Programming
Languages, Paris, France, January 1997.

63

Towards Linguistic Symbiosis of an

Object-Oriented and a Logic Programming

Language

Johan Brichau1, Kris Gybels1, and Roel Wuyts2

1 Programming Technology Lab,
Vakgroep Informatica,

Vrije Universiteit Brussel, Belgium
{johan.brichau, kris.gybels}@vub.ac.be

2 Software Composition Group,
Institut für Informatik,

Universität Bern, Switzerland
wuyts@iam.unibe.ch

Abstract. Reflective systems have a causally connected (metalevel)
representation of themselves. Most reflective systems use the same lan-
guage to reason about their metalevel representation as the language that
is used to reason about their domain. In symbiotic reflection a different
language is used at the metalevel. The practical usability of this symbi-
otic reflection is enhanced if a linguistic symbiosis is accomplished that
transparantly integrates both languages. Implementing such a linguis-
tic symbiosis is relatively straightforward if the meta language and the
base language share the same programming paradigm. The problem be-
comes far more complex when the paradigms differ. This paper describes
the extension of the symbiotic reflective system SOUL with a linguistic
symbiosis between a logic meta language and an object-oriented base
language.

1 Introduction

Reflection is a technique that realizes flexible systems. This is because a reflec-
tive system can manipulate data that is a representation of its own computa-
tion (called causally-connected self-representation). As such, a reflective system
can adapt its own computation. For example, truly reflective programming lan-
guages, such as Smalltalk or CLOS, allow to introduce new language features or
change the internal workings of existing ones.

Typically, the causally-connected self-representation (CCSR) of a program-
ming language is expressed in the same programming language. There also exist
reflective languages in which the CCSR is expressed in a different programming
language (e.g. Agora [5] and RbCl [2]). But this language still adheres to the same

1 Johan Brichau and Kris Gybels are research assistants of the Fund for Scientific
Research - Flanders (Belgium) (F.W.O.)

65

programming paradigm as the base language (e.g. object-orientation) which al-
lows for a relatively straightforward integration. This integration is called lin-
guistic symbiosis [2], which means that program elements from one language
can be used transparently in the other language, and vice-versa. It also means
that one language is actually implemented in the other language, which enables
mutual reflective capabilities.

In this paper, we describe the linguistic symbiosis between a logic and an
object-oriented programming language. The linguistic symbiosis is particularly
hard to achieve because these paradigms are fundamentally different. In general,
object-oriented programs consist of objects, containing state, that communicate
through messages. All control flow is explicitly programmed. Logic programs
consist of rules that describe how a certain fact is true under some conditions.
The control flow is implicit, i.e. the interpreter will prove that a certain fact is
true by proving its conditions. Also, a message send is fundamentally different
from a predicate call. A message always returns a single result and must al-
ways be provided with a fixed number of arguments while a predicate can return
multiple results for multiple variables that were left unbound in the predicate
call. Numerous object-oriented extensions to logic programming languages exist.
Basically, these extensions enhance logic programming with modularization, in-
heritance and late binding but the overall paradigm remains logic programming.
This is fundamentally different from extending an object-oriented language with
a logic programming paradigm.

Wuyts previously presented a system in which symbiotic reflection was intro-
duced between an object-oriented base language and a logic meta language [8].
In the resulting system (SOUL), the CCSR is expressed in a logic language and
it has shown to be particularly useful [3, 4, 7, 6] because logic programming lan-
guages are better suited to express reasoning algorithms such as type inferencing,
design pattern extraction, architectural conformance checking, etc. . . .

The current implementation of SOUL already allows multi-paradigm pro-
gramming with the logic and object-oriented paradigms because values can be
exchanged between programs written in the different paradigms. But SOUL does
not introduce a linguistic symbiosis. We cannot invoke programs implemented
in the object-oriented language in the same way as programs implemented in
the logic language. To solve this problem, we introduce a complete linguistic
symbiosis between a logic and an object-oriented programming language, and
apply this to SOUL. This allows object-oriented programs to transparently use
libraries of logic programs (designed for reflective programming) during method
execution. The implementer of the library can then make use of the full power
of the logic environment while the regular object-oriented programmer is not
exposed to it.

This paper is organized as follows. In the next section, we describe the SOUL
symbiotic reflective system and how SOUL and Smalltalk are cross-bound. Sec-
tion 3 describes extensions to SOUL to accomplish a linguistic symbiosis between
SOUL and Smalltalk. In section 4 we describe an example application and section
5 discusses the open issues.

66

2 SOUL

SOUL (Smalltalk Open Unification Language) is a logic programming language
implemented in Smalltalk. But SOUL offers more than the ability to write
Prolog-like logic programs: it supports the embedding of Smalltalk expressions
in a logic program, which are executed as part of the inference process. These
Smalltalk expressions can use logic variables and Smalltalk objects can be unified
with logic variables. Furthermore, logic programs can be invoked from within a
Smalltalk program by invoking a query. This section shows how this integration
of Smalltalk and SOUL is accomplished. A more detailed discussion can be found
in [7]. We first give a brief overview of how logic programs in SOUL differ from
Prolog programs.

2.1 Differences with Prolog

The differences between Prolog and SOUL are mostly syntactic.

Variables in SOUL start with a question mark (e.g. ?var).
Lists are enclosed in ‘<’ and ‘>’ (e.g. <1,2,3,4>).
Rules are written with the keyword ’if’ instead of a ’:-’ symbol.
Modules are used to encapsulate logic declarations (facts and rules). Each

logic declaration belongs to a module and is only visible in the module where
it is defined 1.

Querying other modules A rule in one module can invoke a query in
another module using the ’.’ operator. For example, invoking a query
‘myQuery(?x)’ in a module called ‘Mymodule’, is written as follows: if
Mymodule.myQuery(?x)

2.2 Cross-binding Smalltalk and SOUL

Smalltalk in SOUL Invocation of Smalltalk programs from within logic SOUL
programs is accomplished through special constructs called Smalltalk term and
Smalltalk clause. Furthermore, Smalltalk objects are treated as constants. Since
everything in Smalltalk is an object, these special constructs are the only new
kind of logic terms that are a direct result of the integration. We now describe
each construct in more detail.

Smalltalk term This is a term that contains a Smalltalk expression enclosed
in square brackets [...]. Each time the inference engine has to unify
this term with another term, the expression is evaluated and the result-
ing Smalltalk object is used to complete the unification (such as binding it
to a logic variable). As such, the real Smalltalk objects themselves can be
bound to logic variables (how this is done, is explained later). Furthermore,

1 Modules have no syntactic notation. How they are built is out of the scope of this
paper.

67

the Smalltalk expression is allowed to contain logic variables. For exam-
ple, the SOUL declaration ‘object([Object new])’ is a logic fact with a
Smalltalk term as its single argument that contains an instance of Object

(not just a notation for it).
Smalltalk clause This is a predication that is syntactically the same as a

Smalltalk term, except that the embedded expression must evaluate to true
or false. For example, the SOUL declaration ‘smaller(?x,?y) if [?x <

?y]’ is a logic rule that uses a Smalltalk clause to compare the values of ?x
and ?y.

Smalltalk object Objects can get bound to logic variables, as a result of
the unification of a Smalltalk term with a logic variable. We extend the
unification-scheme of SOUL to include Smalltalk objects such that they are
treated as constants. This means that objects only unify with (free) variables
and themselves.

generate/2 predicate The generate/2 predicate is a predicate that decom-
poses a Smalltalk collection object into subsequent results of a variable
(similar to what member/2 does for logic lists). For example the query ‘if

generate(?x,[Smalltalk allClasses])’ returns many results for ?x, i.e.
all classes in the Smalltalk image. This is because the expression Smalltalk

allClasses returns a collection object and the generate predicate subse-
quently binds ?x to each element of this collection.

SOUL in Smalltalk Since SOUL is implemented in Smalltalk, Smalltalk pro-
grams can use the SOUL implementation to start logic queries. Without the
transparent invocation mechanism presented later on, a SOUL query has to be
invoked by sending a message to the class SOULEvaluator and iterate over the
returned results after the evaluation. The following is part of a Smalltalk method
containing the invocation of a query:

...
a := 1 + 2.
results := (SOULEvaluator eval:’if member(?x,<1,2,3,4>)’

withArgs: #((x a))) allResults.
results succes ifTrue:[...] ifFalse:[...]
...

This example shows how a query member(?x,<1,2,3,4>) should be invoked
where the value of the logic variable ?x is the value of the Smalltalk vari-
able a. When the query succeeds, the evaluator will return an instance of the
SoulResults class indicating the success of the query and holding a collection
of all successful variable bindings. All the values of these bindings get converted
from logic terms to Smalltalk equivalents as follows so they can be easily ma-
nipulated by the Smalltalk programmer:

Smalltalk objects are trivially mapped onto themselves.
Logic constants are mapped onto a Smalltalk symbol.

68

Logic integers are mapped onto a Smalltalk integer.
Logic lists are mapped onto Smalltalk OrderedCollections.
Logic functor terms are mapped onto a special class CompoundTerm

When the query fails, the evaluator also returns an instance of the SoulResults
class indicating that the query failed.

2.3 Symbiotic Reflection

The SOUL interpreter is a reflective system because it is implemented in
Smalltalk and can thus use the Smalltalk meta-object protocol to investigate
and adapt its own implementation. By allowing the use of Smalltalk objects in
the SOUL language, the SOUL programmer also has access to this MOP and
can reify every Smalltalk program and thus also SOUL itself. Hence, SOUL is in
symbiotic reflection with Smalltalk. For example, the rules that reify Smalltalk
classes to logic declarations are:

class(?x) if
not(var(?x)),
generate(?x,[Smalltalk allClasses]).

class(?x) if
var(?x),
[Smalltalk allClasses includes: ?x].

The first rule implements one possible usage of the class/1 predicate where
the variable ?x is not bound to a value. Therefore, the rule will subsequently
bind ?x to a Smalltalk class. The second rule implements the case where ?x is
bound to a value and therefore, it will check if this value is a Smalltalk class.

Hence, we can invoke a query to gather all classes or invoke a query to check
if a class Symbol exists:

if class(?x).
if class([Symbol]).

With the Smalltalk system reified in SOUL, the power offered by logic pro-
gramming was used to express design patterns, programming conventions and
software architectures, to name but a few [3, 4, 7, 6].

3 Towards Linguistic Symbiosis

A linguistic symbiosis [2] for Smalltalk and SOUL means that a Smalltalk pro-
gram can transparently call a SOUL program as if it was a Smalltalk program
and a SOUL program can transparently call a Smalltalk program as if it was a
SOUL program. The result is that a meta programmer can use the full power of
symbiotic reflection while a Smalltalk programmer can use the reflective facilities

69

offered by SOUL without knowing that they are actually implemented in logic
programs.

In the integration of Smalltalk and SOUL as described above, it is actually
explicitly coded where a logic program and where a Smalltalk program is used:

SOUL to Smalltalk Calling a Smalltalk program from SOUL is made explicit
through the use of a Smalltalk term or clause (using a Smalltalk term or
clause).

Smalltalk to SOUL Calling a SOUL program from within Smalltalk is made
explicit by sending a query message to the SOULEvaluator class.

To accomplish linguistic symbiosis between the logic and object-oriented lan-
guages, we have to map the main concepts of both paradigms on each other.
Basically, we chose to map message sends in the object-oriented paradigm on
queries in the logic paradigm. So, the invocation of a query should be the same
as a message send and vice-versa. Therefore, we propose the following mapping:

1. Smalltalk classes <=> SOUL modules;
2. Smalltalk message sends <=> SOUL predicates;
3. Smalltalk collections <= SOUL query results.

In the following sections we explain each mapping in more detail.

3.1 Smalltalk classes and SOUL modules

The namespace of all Smalltalk classes and the SOUL namespace of all modules
is combined into one namespace which is accessible from both the SOUL and
Smalltalk environment. This results in a combined dictionary of (logic) mod-
ules and (object-oriented) classes. Smalltalk classes encapsulate methods, while
SOUL modules encapsulate logic facts and rules. This difference becomes appar-
ent when sending messages to or invoking queries on both Smalltalk classes and
instances as well as SOUL modules.

3.2 Querying Smalltalk objects

In order to be able to transparently send messages from within a SOUL pro-
gram, message sends should be expressed as queries. As a result, messages need
a representation in the form of a predicate. Therefore, we define a straightfor-
ward mapping of messages to predicates. The predicate name is the message
selector and the predicate arguments are the message arguments with an extra
last argument for the return value of the message. For example, the SOUL query:

if Array.new:(10,?instance),
?instance.at:put:(1,2,?returnvalue)

corresponds with the message(s):

70

instance := Array new:10.
returnvalue := instance at: 1 put: 2.

In this example, an array of size 10 is created and stored in the variable
instance. Afterwards, the integer 2 is stored at position 1 and the returning
value of this message is stored in the variable returnvalue.

3.3 Sending messages to SOUL modules

Conversely, in order to be able to transparently invoke SOUL queries from within
Smalltalk methods, a query should be expressed as a message send. As a result,
SOUL predicates should have a Smalltalk message representation. Therefore, we
define a mapping of logic predicates to Smalltalk messages, using Smalltalk’s
keyword messages.

Keyword messages consist of a selector where the arguments are interleaved
with the keywords of the selector and keywords always end with a colon (e.g:
at: index put: anObject). Because such keyword messages allow for a non-
ambiguous mapping of logic queries to Smalltalk messages, we require that the
names of all logic predicates use the signature of a keyword message. This means
that the predicate name should consist of as many keywords as the predicate’s
number of arguments. Furthermore, this mapping also requires that the keywords
are unique for each predicate that is defined in a module. The benefit of using
keyword messages is explained later. Some example logic declarations that use
this naming convention are:

add:with:to:(?x,?y,?result) if ...
method:inClass:(?method,?class) if ...
class:(?class) if ...

Of course, the problem is that a logic query can return multiple results for
multiple variables, as opposed to a Smalltalk method, which always returns only
one single result. Moreover, the same logic predicate can be used in multiple
ways (i.e. with all arguments bound, all arguments unbound or only some of
them bound). These problems are addressed in the following subsections.

Translating multiway predicates to messages To translate the multi-way
property of logic predicates to Smalltalk, a logic module automatically under-
stands a message for each way in which a logic predicate in this module can be
used. As such, a single predicate in a logic module (possibly implemented by
different logic facts and rules) corresponds to a set of Smalltalk messages that
can be sent to the logic module. Because the name of a predicate uses a keyword
message signature, the signatures of the corresponding Smalltalk messages can
be easily derived from the name of the predicate.

The mapping of logic predicates to Smalltalk messages is most easily ex-
plained by considering how we would write the invocation of a particular predi-
cate as a Smalltalk message. As explained above, we use a naming convention for

71

predicates where the name consists of a keyword for each argument the predicate
takes, much like for method selectors in Smalltalk. When we want to invoke a
predicate by sending a message to a logic module, we simply concatenate the
keywords to get the selector of that message, without intervening colons except
when we want to bind a value to a logic variable. The keywords for the last
arguments are omitted if their corresponding parameters are not bound. In case
that all arguments are left unbound, only the first keyword is used as a message
selector (without colon).

For example, the logic predicate add:with:to:/3 in the Arithmetic module
defines the addition relation and it can be invoked in multiple ways. Therefore,
the Arithmetic module understands the messages shown in table 1, where their
corresponding query is also shown.

Message Query

add: 1 with: 2 to: 3 if add:with:to:(1,2,3)

add: 1 with: 2 if add:with:to:(1,2,?res)

add: 1 if add:with:to:(1,?y,?res)

add if add:with:to:(?x,?y,?res)

addwith: 2 if add:with:to:(?x,2,?res)

addwithto: 3 if add:with:to:(?x,?y,3)

addwith: 2 to: 3 if add:with:to:(?x,2,3)

add: 1 withto: 3 if add:with:to(1,?y,3)

Table 1. Mapping a multi-way predicate to messages

We further illustrate this with two example queries and their corresponding
Smalltalk messages:

Calculate the addition of two numbers:

if Arithmetic.add:with:to:(1,2,?result)
?result -> 3

result := Arithmetic add: 1 with: 2.

Calculate the first argument of the addition, given the second argument and
the result:

if add:with:to(?x,2,3)
?x -> 1

x := Arithmetic addwith:2 to:3.

A consequence of this approach is that for each message, we can document
how many variables it returns (i.e. all arguments that were left unbound in the
corresponding query of that particular message). The examples above use mes-
sages that return a single result for a single variable, but in table 1 many possible
messages need to return more than one results for more than one variable.

72

Returning multiple variables When a message send leads to the invocation
of a query that returns the binding of more than one variable, the results are
returned in a Smalltalk OrderedCollection instance. This is not a break in our
linguistic symbiosis, as we can document what the return result of that particular
message is. For example the logic query to calculate the first two arguments of
the addition that results in 3:

if add:with:to(?x,?y,3)
?x -> 1
?y -> 2

corresponds with the Smalltalk program:

| xyCollection |
xyCollection := Arithmetic addwithto:3.

In this example, two variables need to be returned, which means that a
Smalltalk collection is returned containing the required x and y value. But we
only showed one possible pair of results for ?x and ?y, while there are many
more possible results (such as ?x -> 2 ,?y -> 1).

Returning multiple results for each variable The returning of multiple
results for each variable is a more complex part of the linguistic symbiosis. When
a logic query also returns more than one result for each variable it returns,
we can decide to either hide this from the Smalltalk programmer or explicitly
return them in a collection. When returning all subsequent results as an explicit
collection, the semantics are clear, but the disadvantage is that the Smalltalk
programmer most probably experiences that he is actually invoking a SOUL
query here.

For example, consider the following Smalltalk program that invokes the
add:with:to:/3 logic predicate and prints the results for x on the Transcript.

xyColl := Arithmetic addwithto: 3
xColl := xyColl first.
xColl do:[:x | Transcript show: x]

Because the subsequent results for x are returned in an explicit collection,
the Smalltalk program has to explicitly enumerate over the results. Another
solution we have experimented with, is to hide the collection from the Smalltalk
programmer and represent it as a single result. The return value appears as a
single result to the programmer, but it actually represents all subsequent results.
Internally, this means that we do use a kind of collection but when a message is
sent to this ’implicit collection’, the message is automatically dispatched to all
values of the collection. For example, using the ’implicit collection’ solution, we
can write the above program as follows:

73

xyColl := Arithmetic addwithto: 3

x := xyColl first.

Transcript show: x

Mind that if the program above would be used with the ’explicit collection’
solution, the collection #(0 1 2 3) will be printed to the Transcript. But, while
the ’hidden collection’ provides us with the desired result in many cases, it also
leads to confusing and erroneous behaviour of Smalltalk programs since messages
with side effects are executed multiple times. An improvement for this solution
is to be researched. For now, we continue using the first solution with explicit
collections.

4 Practical Use

In this section we present an example of a system that is implemented using
both logic and OO programming. The example is that of an e-commerce system
in which prices of products are adapted to take into account reductions granted
to a specific user of the system. Which reductions are applicable typically de-
pends on a number of things, such as the customer’s history with the company,
the use of e-coupons etc. Logic programming lends itself well to expressing the
rules governing the applicability of reductions. In her master’s thesis, Goderis
describes an architecture for e-commerce systems that allows knowledge such as
reduction rules to be described using logic programming while the rest of the
system is implemented in OOP [1]. In this work she identified a need to be able
to easily interchange information and control between SOUL and Smalltalk pro-
grams. The linguistic symbiosis mechanism we presented in this paper should
fulfill this need.

For this example we will consider a simple e-commerce system with the two
important classes Product and Customer. The message price can be used on
an instance of Product to retrieve its price.

What we want to do now is apply changes to the return value of the price

method to reflect price reductions granted to the current user of the system.
Such an adaptation is typically done in Smalltalk using object wrappers. We
have similarly defined a logic module wrapper, which is simply a special kind
of logic module that can be used as a wrapper around an object. Any message
sent to the wrapper is forwarded to the wrapped object unless the message is
understood by the module in the sense that it defines a predicate that maps to
the message.

The wrapper for Product instances we need here defines the predicate
price/1 as follows:

price(?reducedPrice) if
?wrapped.price(?basePrice),
findall(?reduction, reduction(?reduction), ?reductions),
reduced(?basePrice, ?reductions, ?reducedPrice)

74

The variable ?wrapped is defined by the wrapper module as referring to the
wrapped object. Here it is used to get the answer to the price message from the
wrapped Product instance.

Several definitions for the reduction predicate can be given, we give a simple
example here:

reduction(10) if
customer(?customer),
?customer.age(?age),
greaterThan(?age, 65)

The above rule expresses that a special “senior’s reduction” of 10% is appli-
cable to customers aged 65 or older.

Furthermore, the wrapping of instances should occur at run-time. The
Smalltalk reflective facilities offer this functionality. The following Smalltalk
method runs periodically and wraps products when they are eligible for reduc-
tions:

activateReductions
allProducts do: [:product |

(knowledgeBase eligibleForReduction: product)
ifTrue:[product wrap: ReductionWrapper new]]

Using the symbiotic reflection and our linguistic symbiosis, it is now easy to
describe when a product is actually eligible for reduction. The following logic
rules do exactly this and are called by the Smalltalk program above.

eligibleForReduction:(?product,?result) if
?product.kind(toys),
Date.today(?date),
?date.month(November).

The rule above describes that toys feature a price reduction in November.

5 Discussion and Future Work

In this paper, we describe ongoing work about the linguistic symbiosis of SOUL
and Smalltalk. Because SOUL is a logic meta language over an object-oriented
base language, this symbiosis requires a mapping of modules to classes and mes-
sages to queries. The advantage of this symbiosis is that the base programmer can
use the meta programs as if they were implemented in the base language. Fur-
thermore, it also provides us with the opportunity to optimize parts of the logic
meta programs by transparently replacing them with Smalltalk meta programs.
Besides enhancing the practical use of symbiotic reflection [8], the linguistic
symbiosis can also benefit non-reflective programming. Programs that do no re-
flective programming can also make use of the power of the logic programming

75

language. As such, through our linguistic symbiosis, we have also introduced
multi-paradigm programming in Smalltalk with the object-oriented and logic
paradigms. We have already tackled many issues in this linguistic symbiosis, but
others still remain open. We now summarize the most important results and
elaborate on the open issues.

5.1 Results

Trivially, to obtain a linguistic symbiosis, a shared namespace for both languages
should exist to allow access to the global entities of both languages. In our case,
this namespace contains references to all classes and logic modules. Because these
entities should look and feel the same in both languages, we need to define a
mapping between them. In our particular case this means that we need to map
predicates onto messages. This mapping has a syntactic aspect and a semantic
aspect.

The syntactic mapping defines the common look, while the semantic mapping
is concerned with the common feel. The syntactic mapping is rather language-
specific, while the semantic mapping is paradigm-specific. Indeed, when using
another object-oriented language (e.g. Java), the semantic mapping of one multi-
way logic predicate to a set of methods will remain while a totally different
syntactic mapping will be needed. Furthermore, we return multiple variables
from a logic predicate in a container. The returning of multiple results for each
of those variables can also correspond to returning them in an explicit container.
Another solution we proposed is to hide this, but the implication of such a
mapping is still to be researched.

5.2 Open issues

Multi-way methods? The linguistic symbiosis, as defined above, treats meth-
ods as ’uni-way’ logic predicates. An issue that remains to be defined is how a
method can correspond to a multi-way logic predicate. Clearly, this is not a triv-
ial issue and it will most likely involve the implementation of a method for each
way in which the predicate can be called. We can envision a system in which
a group of methods that is implemented according to a pattern gives rise to a
single predicate, much in the same way as a logic predicate is mapped onto mul-
tiple methods. On the other hand, there also exist a reasonable amount of logic
predicates that are not multi-way. So maybe this trade-off would be acceptable.

Multiple Results? As we already mentioned, a logic query can return multiple
results for multiple variables. These multiple results can be hidden from the
object-oriented programmer but this can lead to strange behaviour of object-
oriented programs because messages will get executed several times.

76

Backtracking of side-effects? Even more complex issues arise when back-
tracking occurs in the logic program and methods that perform side effects have
been executed. Of course, this is also true in pure logic programs that use logic
predicates that execute side-effects.

Cross-language Inheritance? An issue that we did not mention at all, is
how the inheritance relation could be implemented between logic modules and
object-oriented classes. We consider this topic as future work.

5.3 Paradigm leaks

The above discussed problems of ’multiple results’ and ’backtracking of side-
effects’ can be collectively described as ’paradigm leaks’. The symbiosis mecha-
nism creates a leak where rules of one paradigm end up in the programming lan-
guage based on the other paradigm. Dealing with and backtracking over multiple
results in Smalltalk is not something considered to be part of the object-oriented
paradigm, while side-effects are normally to be avoided in logic programming.
Whether or not this leak is an undesirable effect in some cases remains to be
investigated.

References

[1] S. Goderis. Personalization in object-oriented systems. Master’s thesis, Vrije Uni-
versiteit Brussel, 2001.

[2] Y. Ichisugi, S. Matsuoka, and A. Yonezawa. Rbcl: A reflective object-oriented
concurrent language without a run-time kernel. In Proceedings of International
Workshop on New Models for Software Architecture (IMSA): Reflection and Meta-
Level Architecture, pages 24–35, 1992.

[3] K. Mens, I. Michiels, and R. Wuyts. Supporting software development through
declaratively codified programming patterns. In Proceedings of the 13th SEKE
Conference, pages 236–243. Knowledge Systems Institute, 2001.

[4] T. Mens and T. Tourwe. A declarative evolution framework for object-oriented
design patterns. In Proceedings of Int. Conf. on Software Maintenance. IEEE
Computer Society Press, 2001.

[5] W. D. Meuter. The story of the simplest mop in the world - or - the scheme of
object-orientation. In Prototype-based Programming, pages 24–35. Springer-Verlag,
1998.

[6] R. Wuyts. Declarative reasoning about the structure of object-oriented systems.
In Proceedings of TOOLS-USA ’98, 1998.

[7] R. Wuyts. A Logic Meta-Programming Approach to Support the Co-Evolution of
Object-Oriented Design and Implementation. PhD thesis, Vrije Universiteit Brussel,
2001.

[8] R. Wuyts and S. Ducasse. Symbiotic reflection between an object - oriented and
a logic programming language. In ECOOP 2001 International workshop on Multi-
Paradigm Programming with Object - Oriented Languages, 2001.

77

Replacing Refinement or Refining Replacement?

A Unifying Framework for Object-Oriented Methods

Sibylle Schupp

Dept. of Computer Science
Rensselaer Polytechnic Institute (RPI)

Troy, NY
schupp@cs.rpi.edu

Abstract. In object-oriented programming, one distinguishes between
replacement semantics, where a child method overrides the correspond-
ing parent method, and refinement semantics, where a parent method is
specialized by the child one. Although from the standpoint of software
development it would be advantageous to have both semantics avail-
able, none of the current object-oriented languages gives users a choice.
In this paper we therefore investigate how a program can be designed
that simulates replacement and refinement semantics in an ordinary user
program, i.e., without language support. We provide a unifying view of
refinement and replacement, in which replacement can be considered
as a special case of refinement, characterize in an abstract, language-
independent way the metaprogram that allows changing the predefined
method semantics with one a user can control and present a prototype
implementation, a framework in C++.

1 Introduction

One of the often quoted advantages of object-oriented programming is the com-
bination of code reuse and extensibility. If users of a large object-oriented system
need to augment the system, they need not start from scratch but extend the
inheritance hierarchy incrementally. What portion of code can be reused, how-
ever, depends. While at object level every child incorporates its parent(s) and
in that sense reuses its data members, the semantics of methods differs between
the so-dubbed American school and the Scandinavian school of object-oriented
programming: the former implements replacement semantics, the latter refine-
ment semantics [2]. In languages of the Scandinavian school, e.g., Simula or
Beta, it is therefore possible to inherit and successively refine method bodies. In
contrast, in Java, C++, and other languages of the American school, designers
of a derived class have to accept a method as it is implemented by the parent
class, or else they have to entirely rewrite it. On the other hand, replacement
semantics adds the freedom to entirely override a parent method, for example
with a more efficient implementation, while in refinement semantics each gener-
ation only keeps adding code. In short, either semantics has its advantages over
the other one, and either its disadvantages. The working programmer, therefore,

79

would be served best having both semantics available. However, no language we
are aware of supports replacement and refinement semantics at the same time.

If not directly supported by a language, could refinement semantics, then, be
simulated by a program on top of it? Likewise, could replacement semantics be
made available in a language that has no support for it built in? In other words,
can a user program be designed that can take control over method dispatching
and implement its own semantics? Organizing an issue that typically is part of
the language implementation, such program certainly has to be a metaprogram
that understands how to utilize and manipulate the existing compiler so that
the compiler performs the desired steps automatically. Yet, how realistic is it to
expect an object-oriented language to provide the means for a user program to
cancel out predefined behavior?

In this paper we present a metaprogram that allows overriding the prede-
fined method semantics with one a user can control. Given a method and an
inheritance hierarchy, a user can decide at invocation time whether this method
replaces or refines the corresponding ones in the base classes. Moreover, stan-
dard features of object-oriented languages suffice to realize this metaprogram,
with one exception, though: the availability of a lazy binding mechanism seems
to be necessary. Our current implementation is in C++, its core a parameter-
ized, compile-time recursive method crawler based on the techniques of tem-
plate metaprogramming [4]. Interestingly, template metaprogramming, which
originally was introduced to emulate different programming styles in C++, thus
can be used to emulate object-oriented programming in itself.

This paper makes three contributions. First, we provide a unifying view of
refinement and replacement by defining refinement as a binary relation of meth-
ods in which replacement can be considered as just a special case of refinement.
This definition suggests the design of a metaprogram that allows refinement to
be specialized to replacement. Second, we characterize the metaprogram in an
abstract, language-independent way so that it can be decided for an arbitrary
object-oriented language whether or not it allows for an implementation of such
metaprogram. Third, we discuss our prototype implementation, which is orga-
nized as a framework consisting of three parts: the metaprogram that handles
method dispatching; the framework class that factors out tasks common to all
user-defined classes and encapsulates them in a separate base class that the
framework or library designers provide; and a certain programming discipline a
user has to exercise when designing new classes and the main program.

We begin the presentation with a formalization of the notion of refinement
and replacement in Sect. 2. For readers less familiar with the “Scandinavian
semantics” Sect. 3 summarizes some applications of action specialisation, as it is
called there, and gives an idea of the “look-and-feel” of the Beta language, the
language that implements refinement idiomatically. Sect. 4 then identifies in an
abstract sense what the requirements are for a metaprogram that can override
method semantics. In the second part of the paper we show how these abstract
requirements map to C++ features (Sect. 5), then turn to our C++ implementation
and explain the framework in some detail. We first discuss the user interface and

80

demonstrate the framework with an example program (Sect. 6), then present
the framework class and the metaprogram (Sect. 7); the source code of the
framework, including the metaprogram, is small enough to be completely listed
in the appendix. An evaluation of the C++ metaprogram and the approach of
user-controlled method semantics concludes the paper.

2 Definitions

Let L be a language that supports classes and inheritance.

Simplifying assumptions. Since type checking issues are irrelevant in our
context we bypass all questions of coercion, contra- and covariance and refer
to a method by its method identifier only. We furthermore refer to the direct
base class of a class as a parent class and assume that each child has a unique
parent to which a method f can be passed on if f is not defined in the child
class itself. For a language with multiple inheritance the notion of the unique
parent refers to the parent that is the legal receiver of the method. Without loss
of generality, we assume that this parent is uniquely defined and, if not, that
the language translator deals with the name clash implied. Finally, we identify
a method body with the sequence of statements or expressions it comprises and
omit its declarative sections.

Notation.

1. Let A, B be two classes. If A is a base class of B we write

B ≺ A.

Obviously, ≺ is a transitive relation. Its reflexive closure is denoted by �
and includes the class B itself.

2. We use subscript notation to indicate the class of the receiver, e.g., fA means
that a message f is sent to an instance of class A. Note that a class does not
have to define a method to be a legal receiver of it. If it defines the method,
we use ≡ to bind the method identifier to its body:

fA ≡ 〈a1, . . . , an〉,

where a1, . . . , an are statements and expressions in L, possibly encapsulated
in other member functions of A.

3. Let e1, e2 be two statements or expressions in L. If e1 is executed before e2,
we write

e1 < e2.

The relation < is transitive and irreflexive.

Definition 1. Denote by C and F two sets of class and function identifiers,
respectively. Let A, D be two classes in C with D � A and let f be a method
defined in D and in each of its base classes:

fI ≡ 〈preI , postI〉 ∀D � I � A,

81

where preI and postI are expressions or statements, possibly encapsulated in
other members of I; we call preI and postI the prefix and postfix of fI . Let
(f, C, D) ⊆ F × C × C be a relation such that

1. D � C � A

2. preI < postI ∀D � I � C

3. It holds

preJ < preD ∧ postD < postJ ∀ J : D ≺ J � C,

Then (f, C, D) is called a refinement relation and we say fD refines fC .

Definition 2. Let f, A, C, D be as in Def. 1. In the special case of C = D

we call the relation (f, D, D) a replacement relation and we say fD replaces
fI ∀D < I � A.

With Def. 2, replacement and refinement are theoretically unified so that there
is no need to distinguish between both. Unless said otherwise, the notion of
refinement in the following always includes replacement as a special case.

3 Action Specialization in the Beta Language

As already discussed in the introduction, there are equally good reasons for
the “Scandinavian” and the “American” semantics. However, since in the com-
mercial world languages with replacement semantics predominate, it might be
useful to recall some of the motivations for the use of refinement in the tra-
ditional sense. In this section we discuss some applications in which refinement
semantics is advantageous and furthermore give an idea of the “look-and-feel” of
the Beta language, the language that implements refinement in a paradigmatic
way. In languages with a special semantics for constructor functions, some of the
typical applications for refinement can be encapsulated in constructor functions.

3.1 Applications

The benefits of refinement semantics include a reduced amount of code a user has
to provide as well as increased safety and stability of a program. The following
list illustrates four typical kinds of applications.

– Resource management often requires the nesting of functions that “come in
pairs.” Allocation, for example, requires the subsequent deallocation; and
getting a file handle requires returning this handle. Often, it is the user who
is responsible for the proper release of a resource—and often users forget
to do so. Refinement semantics provided, a library or framework writer can
take the burden of proper resource management away from a user by entirely
factoring out this task and encapsulating it in a method of a separate class.

82

– The standard textbook case study of a booking system often is modeled as
an abstract class that provides the interfaces to database operations and
their partial implementation, but defers the full implementation to the spe-
cific (flight, theater, etc.) booking system. Here, refinement semantics al-
lows defining the more specialized method incrementally, as the sequence of
statements that extends the more general implementation in the base class,
without the need to repeat the code defined there.

– Similar examples provide hierarchically structured documentation languages
like XML where every non-empty element starts with a start-tag and ends
with an end-tag and “the logical and physical structures must nest properly,
as described in 4.3.2 Well-Formed Parsed Entities” [14]. If, for example, a
company wants to give all its publications a uniform appearance while still
leaving room for departments to have their own style, then refinement can
help combining uniformity and extensibility: the root class can provide the
first level in the hierarchy of the XML document, including the document
type description, DTD, that renders an XML document as valid. Subse-
quent classes then inherit the overall document structure but can design the
subsections still on their own.

– Finally, the original motivation for Simula to introduce refinement comes
from the transfer of control from fB to fA and the, with that respect, sym-
metric relation between fA and fB . Since both fB “calls” fA and fA “calls”
fB , either one suspends its execution in favor of the other one and resumes
its execution at exactly the point of suspension. The two methods therefore
are similar to coroutines. As such can they be applied to various simulation
tasks, taking turns in playing the active and passive phase of the simulation.

3.2 Constructor semantics

In many languages with replacement semantics, constructors, and, for that mat-
ter, destructors, are treated specially and in fact are subject to a semantics sim-
ilar to refinement semantics. Some of the examples that illustrate the benefits
of refinement semantics can therefore be modeled by an appropriate constructor
design. For example, the resource-acquisition-is-initialization idiom [13] suggests
encapsulating the acquisition of a resource in the base class constructor, its re-
lease in the corresponding destructor. This idiom thus is based on the mechanism
that the call to a child’s constructor internally includes a call to its base class
constructor, and that a call to its destructor recursively calls the destructors of
the base classes.

3.3 The Beta Language

The first language supporting refinement, although in restricted form, was Sim-
ula [12, 9]. In Simula, there exist prefix classes, that are classes that allow for
concatenation at different levels. Since classes can contain statement lists, sub-
classing a prefixed class means concatenating these statement lists and to invoke
the statements of the prefix class before invoking the ones from its subclass. The

83

keyword inner was introduced to allow the user to override the default order
and to specify the invocation point of the statements of the subclass.

The Beta language extends Simula’s idea of specialization. In Beta, every-
thing is centered around the notion of a pattern, which syntactically unifies
classes and functions [8, 6]. A pattern Q is defined as a pair of name and de-
scriptor

Q: (# E #);

where (# and #) mark the beginning and end of the descriptor. Syntacti-
cally, there is no difference between a class pattern and a procedure pattern; of
course, the descriptor of a class pattern can include procedure patterns, similar
to class methods elsewhere. (Class and procedure) patterns contain an action
part, which is further divided in three parts: enter-part, do-part, exit-part. The
enter- and exit-part describe the input and output parameters, respectively, while
the do-part consists of the imperatives, e.g., assignments, expressions, or control
structures, that perform the action. A class pattern P can be subpattern of Q

P: Q (# E #);

and, likewise, can subpatterns be used for procedure patterns. In particular
is it possible for a subpattern to specify additional imperatives. As in the case
of Simula, the keyword inner specifies how the action part of the superpattern
is combined with the one of the subpattern; if a descriptor has no subpattern,
inner has no effect.

Q: (# E do E inner E #);

P: Q(# E do E #);

By default, inner refers to the immediate enclosing object descriptor; any
other object descriptor can be given explicitly.

C: (# a,b: @integer

do 11->a;

inner C;

33->b

#);

C1: C (# c: @integer

do 22->c

#)

Execution of an Instance of C1 starts here

C: (# a,b: @integer do 11->a; inner C; 33->b #)

C1: C(# c: @integer do 22->c #)

Fig. 1. Example and illustration from the Beta book [8]: “The execution of a C1 object
starts by execution of the imperatives described in C (. . .) [and] implies execution of
11->a, 22->c and 33->b.” (Fig.6.5, Sect. 9.4).

84

4 Abstract Requirements

Assuming an (arbitrary) object-oriented language, how does a metaprogram in
this language look that controls method semantics from the user level? In this
section we abstractly identify the subtasks of such metaprogram and relate them
to language features. As it turns out, all but one are standard features of object-
oriented languages.

The absolute prerequisite for such metaprogram to work, informally speaking,
is the availability of some kind of lazy binding mechanism. Given Def. 1, lazy
binding is necessary since the execution of a method in a base class is interleaved
with the one in the child class, which, however, does not yet exist when the base
class is defined. Were every method at the base class level completely defined at
class design time there were no way to later “insert” the method of a child class
and to establish the execution order required. Lazy binding, however, allows
(partially) deferring the definition of a method, thus can serve as a hook for the
metaprogram to extend a method in the desired way.

Deferring means transferring control, to the metaprogram that organizes the
method lookup. Transferring requires on the other hand the control to get back
from the metaprogram to the refining class methods, to call the prefix defined in
the next-lower level of the inheritance hierarchy and, ultimately, to return to the
postfix defined at the current level. A callback mechanism between the metapro-
gram and the class hierarchy is necessary, therefore. The callback requires at
the same time a notion of an order or sequential execution that guarantees, e.g.,
that one prefix has terminated before the subsequent one starts. This callback
also has to be parameterized so that at every level of the inheritance tree the
parent class can initiate the respective prefix call on the child. Given such pa-
rameterization, however, the special case of replacement can simply be realized
by binding parent and child class to the same type.

Third, the interplay of suspending and resuming methods in the child and
the parent class has to be implemented with object-oriented discipline. With
no particular compiler assistance available, invoking the prefix of a base class
method from within a child method requires getting from a child object to its
parent, as this object is the proper one its method can be called on. Similarly,
the suspension of the parent method and the resumption of the child method
requires getting from the parent to the child object, as this time the child is
the proper receiver. To be able to switch between child and parent object, the
metaprogram needs to “traverse” the objects in the inheritance hierarchy, both
upwards from child to parent and downwards, from parent to child.

Finally, the whole metaprogram must guarantee that no new instances are
created of the object the methods of which are subject to the controlled seman-
tics, in particular not of the object the user originally called the method on. This
guarantee is necessary since there are applications of refinement that work on
a per-object base: managing an object’s resources via refinement, for example,
would be meaningless if the refinement would not work on the original object of
the user program but on a copy. This requirement therefore implies by-reference
semantics or passing of addresses, coercion, and other features that avoid the

85

introduction of copies. Of course, it is permitted to construct objects for helper
classes.

The four subtasks, or constraints, just described essentially suffice to demon-
strate the feasibility of controlling method semantics within a metaprogram at
the user level. For its acceptance in practice, however, we additionally require
the metaprogram to incur no run-time overhead. While it might be possible
to implement the mutual dependency between base and derived class methods
with a run-time callback mechanism, we request the call sequence be resolved at
compile time. Moreover, the metaprogram should be usable with an acceptable
amount of extra effort on part of the user.

5 The Requirements in C++

The previous section identified the requirements of a user program that im-
plements refinement (and replacement) semantics. In summary, the program
depends on a lazy binding facility and reference semantics, has to organize a
callback and to accomplish inheritance tree traversal. To motivate the different
design decisions we made in our C++ metaprogram, we now show how these
requirements can be mapped to features in C++.

Lazy binding, to begin with, can be realized in C++ through the template
mechanism. As the language specifies, template parameters are bound on de-
mand, in particular is the code for a function template generated only when its
template parameter is specialized. Using function templates we not only delay
the compilation of a method but can also bind the template parameter in a way
that brings the child method into play. In simplification, interface and body of
a method look as follows:

template<class Inner>

void method() { pre(); Inner(); post(); }

where pre and post are member functions that encapsulate the prefix and
postfix of method. We note, for technical reasons, that template parameters of
functions are type parameters. Whatever code we want to insert via parameter
binding therefore has to be represented as a type; there exist standard techniques
and idioms for how to do that.

Since the binding of template parameters is resolved at compile (instantia-
tion) time, the required callback between the methods of the refinement relation
and the method lookup have to be organized as a static callback. We therefore
introduce a parameterized class that can hold all statically available information
and the current type: the class Rec<Self,Info> is parameterized over the class
types in which the member functions of the refinement relation are defined and
an information class, which we discuss later.

The callback begins when a method passes on to Rec the type of the class
it is member of (Self). Based on this type, and combined with the information
from the second parameter, helper classes determine the next receiver and the
next action to perform; the control returns when method is invoked on the child:

86

template<typename Info, typename Type>

struct Rec {

void recur(Type& parent) {

// look up the name of Type’s child

child& c = static_cast<child&>(parent);

c.method<Info>();

}

};

With the introduction of the Rec class, the previously given method body can
be described more precisely: to initiate the static callback, method specializes Rec
with the type of its owner class, Self; the second parameter, Info, is supported
by the main program and passed on unchanged. The (still slightly simplified)
body now reads as

template<class Info>

void method() {

pre(); Rec<Self*,Info>(*this); post();

}

Three remarks are in place: first, the specialization with Self* instead of
Self has technical reasons since C++ requires a complete type here while the
definition of the class has not been finished yet. The use of a pointer type does
not indicate any run-time indirection. Second, the different method invocations
are called only on different slices of the very same object the user program
supplies: method passes on the this object, and the Rec class downcasts it to
call the next prefix on the child type; nowhere, however, is a new object created.
Finally, all method bindings occur at compile time, thus avoid any run-time
overhead.

The traversal of an inheritance tree, third, is easy to do at the object level
given a language that has as many low-level features as C++; we have already seen
the static cast conversion operator. Since we are working within the template
sublanguage, however, it will also be necessary to traverse the corresponding type
tree and to trigger the right instantiations. Neither does C++ have direct support
for such type tree traversal, however, nor is it possible for a the base class to
provide a type alias to a derived, i.e., not-yet-existing class. We therefore resort
to the standard technique of interface templates or traits [11] and introduce a
childOf trait. The price to pay, of course, is that a user has to fill out this trait.
Using the childOf trait, the Rec class can traverse the inheritance hierarchy
downwards and, with the callback mechanism just described, enforce that the
prefixes are executed in the correct order. The execution of the postfixes, in
inverse order, is then for free. Once the bottom of the hierarchy has been reached
and the recursion stops, the call stack in C++ guarantees that, starting with the
innermost, leaf class, each method on the stack executes its prefix before it
returns to its caller. When the call stack is empty, the outermost postfix has
been invoked and the refinement is complete. The remaining question is how to
control the depth of the refinement. This is done by the class Info that packages

87

Info<A,C,tag>childOf<tag>
A B
B C
C D

action_traits<tag>

action(T)
method(T)

Rec<Info, Type>

childOf<Type> child
action_traits<tag>::action(child)

method(T)
 T::pre(); Rec<Info,T>;T::post()
A
 pre() post()
B
 pre() post()
C
 pre() post()
D
 pre() post()

Fig. 2. Dependencies between the components of the framework: method instantiates
Rec, which looks up the traits childOf and action traits, to determine action and
receiver type, then calls method on the child.

up the first and the last class in the refinement relation along with method to
be refined.

struct Info<A,D,demo_tag>; // refinement

struct Info<D,D,demo_tag>; // replacement

6 Example

Most of the tasks explained in the previous section is transparent to the “end
user.” In demonstration, we take the class designer’s view and illustrate a main
program just from a normal user’s angle.

Suppose we want to refine the method demo. From a user’s point of view we
can assume that the framework provides a class, say RefineDemo, that defines
a demo (wrapper) function and determines that, in this particular refinement
relation, the pre- and postfix are named pre and post. Given this framework
class, the user derives the class A from it and defines the outermost action of the
refinement as the body of A::pre and A::post, respectively. All other classes in
the inheritance hierarchy, B, C, and D, are derived as usual; each of them defines
the two methods pre and post with the same signature as A::pre and A::post.
In addition, each class needs to specialize the childOf template, to help the
metaprogram traversing the class hierarchy from the parent to the child. These
steps done, the user has gained control over the method semantics.

Controlling the degree of refinement, including switching between re-
finement and replacement, is done by defining the “control type”
Info<Refinement,Root, Leaf> and appropriately specializing its three parame-
ters. In our example, there are two control types, Info1 and Info2, both referring
to the refinement relation represented by the demo tag—the same used in the
childOf definition—and both specifying D as the relative leaf. However, Info1
lists class A as its relative root while Info2 specifies class D. Binding demo’s type
parameter to either Info1 or Info2, the method d.demo<Inner> then either
refines the pre- and postfixes in its base classes or replaces them.

88

#include "demo_lib.hpp" // the framework

struct A : public RefineDemo {

void pre (void) { std::cout << "A("; }

void post(void) { std::cout << ")A "; }

};

struct B: public A {

void pre (void) { std::cout << "B["; }

void post(void) { std::cout << "]B "; }

};

struct C: public B {

void pre (void) { std::cout << "C{ "; }

void post(void) { std::cout << "}C "; }

};

struct D: public C {

void pre (void) { std::cout << "D< "; }

void post(void) { std::cout << ">D "; }

};

template<> struct childOf<A*,demo_tag> { typedef B child; };

template<> struct childOf<B*,demo_tag> { typedef C child; };

template<> struct childOf<C*,demo_tag> { typedef D child; };

int main() {

typedef Info<A,D,demo_tag> Info1;

typedef Info<D,D,demo_tag> Info2;

D d;

std::cout << " ---- Refinement ----\n";

d.demo<Info1>();

std::cout << " \n---- Replacement ----\n";

d.demo<Info2>();

return 0;

}

[schupp@Strepponi]$ g++ user.C

[schupp@Strepponi]$./a.out

---- Refinement ----

A(recurring down

B[recurring down

C{ recurring down

D< recursion stops

>D }C]B)A

---- Replacement ----

D< recursion stops

>D

Fig. 3. User-controlled method semantics: the instantiation of Info controls which
methods are refined or whether refinement degenerates to replacement.

89

7 The Framework

In the methodology of object-oriented programming, the notion of a framework
usually refers to a set of classes designed by advanced users for a special task and
in a way that allows for easy extensions by application users. The framework in
our case, however, implements a language feature rather than an application. It
therefore makes sense to differentiate between the core metaprogram, which has
to be written once, and the classes that are specific to a particular refinement
relation. The code for the former is given in this paper, the code for the latter,
though not difficult, typically should be provided by a library designer. In this
section it also becomes apparent why we chose C++ as implementation language.
The lookup of type names and of the various instances of the method to be
refined, the recursive type binding and type tree traversal, the decision when
the recursion stops, all this, as part of a (static) meta-program, can utilize C++,
which implements these very steps within its template translation mechanism.
Without the approach of a meta-program and the support by C++, the program
size would be considerably larger.

7.1 The library designer

What distinguishes one refinement relation from another is not its operational
semantics but merely the syntax: the names of the pre- and postfixes and of the
refinement relation itself. The library designer’s task, therefore, in essence is to
introduce the (method) identifiers through which the metaprogram and the user
program can communicate.

To continue the example of the previous section, we assume the task is to
organize the refinement of the method demo. Altogether three methods have to
be defined, then: first, the interface to the user program, the demo method itself,
which extracts the relative root the user has provided and calls a helper function.
Second, this helper function, demo. This function is part of the static callback:
it calls pre and post on a parameter that, in the course of the metaprogram, is
bound to different types, and furthermore creates a Rec object that, as we will
see in the next section, determines the child of Self and calls demo on the child.
The implicit (though documented) assumption is that all specializations of Self
define methods pre and post and, conversely, that the names for the pre- and
postfixes for other refinements do not cause name conflicts.

template<class Inner>

void demo() {

typedef typename Inner::root root;

_demo<Inner,root>(static_cast<root&>(*this));

}

template<class Inner, class Self>

void _demo(Self& s) {

s.Self::pre(); Rec<Inner,Self*> r(s); s.Self::post();

}

90

Both demo and demo are encapsulated in a class, here RefineDemo, which
serves as the base for the deriviation of user classes so that demo can be called
on any such derivation. Except for the 4 identifiers involved, demo, demo, pre,
and post, the exactly same steps have to be taken for any other refinement.

The third and last method to define is the member action of a so-called
action trait. Again, the purpose is to communicate to the metaprogram in-
formation specific to the demo-refinement, here: which particular action to call
in the static callback (see appendix A for the complete code).

template<typename InfoType>

void action(Type& t, InfoType&) {

t.template _demo<InfoType,Type>(t);

}

7.2 The metaprogram

The core of the metaprogram is the class Rec we have already seen (Sect. 5),
which organizes the static combination of recursion and callback. Its body over-
loads the method identifier recur with an implementation for the base case,
when the recursion stops, and one for the recursive case. In the recursive case,
three steps suffice: given a type reference and the particular tag for a refinement,
the name of this type’s child, ch, can be retrieved from the childOf trait. This
very tag and the child’s type-name can be used to specialize and instantiate the
action trait, which then downcasts the parent object to a child object and
invokes action on the child. The info object is passed along so that the sub-
sequent instance of Rec can decide whether or not the recursion stops. For the
complete code see appendix B.

void recur(false_t,Type& parent) {

typedef typename childOf<Type*,typename Info::fun>::child ch;

action_trait<child,typename Info::fun> next;

Info info;

next.action(static_cast<ch&>(parent),info);

}

void recur(true_t, Type& t) {}

8 Evaluation and Conclusion

With the implementation details and the example main program from the pre-
vious sections we can now evaluate the framework as a whole and conclude why
a uniform, user-controlled view of replacement and refinement can be useful.

One of the major concerns in practice is whether the suggested framework,
a program on top of the compiler’s method dispatching, incurs any overhead
in space and time. The technique of metaprogramming, however, ensures that
all computation takes place at compile time. Moreover, all additionally created

91

objects are either instances of empty classes, thus likely to be optimized away,
or at least do not contain any data members. Also important from a practi-
cal standpoint, the user interface almost entirely hides the complexity of the
metaprogram: except for the definition of the Info type, users merely exercise
an object-oriented discipline. Lastly, since metaprograms can have surprisingly
long compilation times, we point out that in our program the depth of the tem-
plate nest is not large enough to cause any compilation problems. We should
also mention that the code presented supports nullary functions only; to sup-
port methods of arbitrary arity the metaprogram needs to overload the wrapper
method action for every arity.

Another question is whether there actually are situations where a user would
like to have a choice between replacement and refinement and, furthermore,
whether library designers would actually like to see their users given such choice.
We want to emphatically answer both questions in the affirmative and believe
that it is important that refinement and replacement can coexist not only in one
inheritance hierarchy but also in one method. For an example one may consider
the following algebraic hierarchy of multiplicative structures: an abstract class
Ring and the two classes VectorRing and ComplexVectorRing, which clearly
can be ordered so that each multiplication refines the previous one [10, 8]. What,
however, if a user wants to extend this inheritance hierarchy by a matrix class?
The specifics of matrix multiplication requires to break the refinement relation.
If refinement and replacement coexist, users can simply switch to replacement
semantics, thus are not hampered by earlier decisions of a library designer. None
of the current object-oriented languages, however, gives programmers any means
to specify the method semantics.

More flexible prove multimethods [3, 5], which provide optional refinement
facilities such as :after and :before in CLOS. Yet, they too force to cast in
stone what a method’s semantics shall be and thereby exclude any diverging
view a client might have. In particular is it impossible to associate more than
one semantics with a method. If refinement and replacement can coexist in the
same method, however, a method can both specialize its parent’s method and
be used independently from it. In the XML example in Sect. 3, for instance, it
is easy to envision that a document design class can be used both as part of a
larger, i.e., the company’s design style and stand-alone. This flexibility is lost if
the method designer needs to make an (irreversible) choice.

As often is the case, more freedom for a user implies more responsibility. We
believe the advantages outweigh the risks here.

A The Library

#ifndef __DEMO_LIB_HPP

#define __DEMO_LIB_HPP

#include "refinement.hpp"

struct demo_tag{};

92

template<class Type>

struct action_trait<Type,demo_tag>

{

template<typename InfoType>

void action(Type& t, InfoType&) // transfer control back to

{ // RefineDemo::_demo

t.template _demo<InfoType,Type>(t);

}

};

struct RefineDemo {

template<class Inner> // user interface: extract the

void demo() { // root, let _demo do the work

_demo<Inner,typename Inner::root>

(static_cast<typename Inner::root&>(*this));

}

template<class Inner,class Type> // static callback: transfer

void _demo(Type& s) { // control to Rec, schedule post

s.pre(); Rec<Inner,Type*>r(s); s.post();

}

};

#endif // DEMO_LIB_HPP

B The Metaprogram

#ifndef __REFINEMENT_HPP

#define __REFINEMENT_HPP

#include <iosfwd>

#include <string>

#ifndef TRACE

#define TRACE (1)

#endif

static int indent = 2; // for demonstration purposes

void trace(const std::string& s, int indent) {

if (!TRACE) return;

while(indent-- && !(indent <0)) std::cerr << " ";

std::cerr << s << std::endl;

}

// users control degree of refinement by specializing

// Root and Last

template<class Root, class Last, class FunTag>

93

struct Info

{

typedef Root root;

typedef Last last;

typedef FunTag fun;

};

template<class Child, class FunTag> // downwards traversal of

struct childOf; // the inheritance tree

template<class Type, class FunTag> // encapsulation of

struct action_trait; // callback function

struct true_t{}; struct false_t {};

template<typename T1, typename T2> // compile-time decidable

struct EQUAL // equality predicate

{

static const bool RET = false;

typedef false_t result;

};

template<typename T>

struct EQUAL<T, T>

{

static const bool RET = true;

typedef true_t result;

};

template<typename Info, typename Type> // the metaprogram

struct Rec;

template<typename Info, typename Type>

struct Rec<Info,Type*>

{

Rec(Type& parent) {

// if Type == Info::last return, otherwise recur

typedef typename EQUAL<Type,typename Info::last>::result res;

recur(res(),parent);

}

void recur(false_t,Type& parent) // recursive case

{

if (TRACE) trace("recurring down", indent);

// look up the type-name of Type’s child, create action trait

94

typedef typename childOf<Type*,typename Info::fun>::child child;

action_trait<child,typename Info::fun> next;

// downcast the parent object and call action on the child

Info info;

next.action(static_cast<child&>(parent),info);

}

void recur(true_t, Type& t) { // base case

if (TRACE) trace("recursion stops", indent);

}

};

#endif // __REFINEMENT_HPP

References

[1] K. Bruce. Foundations of Object-Oriented Languages. MIT Press, 2002.
[2] T. Budd. Object-oriented Programming. Addison-Wesley, 1997.
[3] C. Chambers. Object-oriented multi-methods in Cecil. In O. Lehrmann Mad-

sen, editor, Proc. of the 6th European Conf. on Object-Oriented Programming
(ECOOP), volume 615, pages 33–56. Springer-Verlag, 1992.

[4] K. Czarnecki and U. Eisenecker. Generative Programming—Towards a New
Paradigm of Software Engineering. Addison Wesley Longman, 2000.

[5] D. Bobrow et. al. Common Lisp Object System specification: X3J13 Document
88-002r. ACM SIGPLAN Notices, 1988.

[6] Mjolner Informatics. Introduction to Beta. Technical report, MIA 94-26, Nov
2000.

[7] S. Lippman. C++ Gems. Cambridge University Press, December 1996.
[8] O. Lehrmann Madsen, B. Moller-Pedersen, and K. Nygaard. Object-Oriented

Programming in the BETA Programming Language. Addison-Wesley, 1993.
[9] B. Magnusson. An overview of Simula. In J. Knudsen, M. Lofgren, O. Lehrmann-

Madsen, and B. Magnusson, editors, Object-oriented environments: the Mjolner
approach, pages 79–98. Prentice Hall, 1994.

[10] B. Meyer. Object-oriented software construction. Prentice Hall, 2nd edition, 1997.
[11] N. Myers. A new and useful template technique. In C++ Gems [7].
[12] K. Nygaard and O-J. Dahl. The development of the SIMULA language. In

R. Wexelblat, editor, History of Programming Languages, pages 439–493. Aca-
demic Press, 1981.

[13] B. Stroustrup. The C++ programming language, 2nd. Ed. Addison-Wesley, 1994.
[14] W3C. Extensible markup language (XML) 1.0 (second edition). Technical report,

http://www.w3.org/TR/2000/REC-xml-20001006, Oct 2000.
[15] P. Wegner. Dimensions of object-oriented language design. In Proc. of OOP-

SLA’97, pages 168–182, 1997.

95

Java-Style Variable Binding in C++

Thomas Becker

Zephyr Associates, Inc.
Zephyr Cove, NV thomas@styleadvisor.com

Abstract. This paper discusses how Java’s variable-to-object binding
can be emulated in C++. An example from commercial software devel-
opment is described where this emulation was a factor in bringing the
software to market in time and making it commercially successful.

1 Introduction

Ever since the C++ language saw the light of day, it has had competition from
higher-level, more run-time intensive object-oriented languages. In the early
nineteen-nineties, it was C++ vs. Smalltalk and CLOS, followed by C++ vs.
Java, and, most recently, C++ vs. C]. This debate takes place on all levels, in
the academic world as well as in company meetings where decisions have to be
made about which language to use for a particular software project or even for an
enterprise-wide IT strategy. Needless to say, this is an overwhelmingly complex
issue that cannot be fully addressed in a paper like this. However, there is one
aspect of this discussion that I believe has been consistently underemphasized
and overlooked, namely, the possibility of emulating idioms and paradigms from
one language in another. Using the variable X for the name of the high-level
object-oriented language du jour, my contention in the C++ vs. X discussion
has always been, “You can emulate X in C++, but not vice versa.” My main
source of proof for this claim is James Coplien’s 1992 classic ”Advanced C++
Programming Styles and Idioms” ([1]). Large parts of this book are dedicated
to the development of techniques to emulate idioms from Smalltalk in C++.
Among other things, Coplien shows how the loose variable-to-object binding,
the run-time type system, and the automatic memory management of Smalltalk
can be emulated in C++. Reading Coplien’s book today, it is quite clear that
similar techniques can be used to achieve the same emulation for many idioms
from Java or C].

It has long been my impression that Coplien’s work and the numerous possi-
bilities that it hints at have not received the kind of attention that they deserve,
certainly not among practicing software engineers. Although many of his ideas
have been taken up and developed further in the patterns discussion, the fact that
he was primarily interested in emulating Smalltalk and CLOS idioms in C++
has received precious little attention. The current interest in multi-paradigm
programming with C++ tends to focus on the emulation of non-object-oriented
paradigms such as functional programming in C++. I strongly believe that it

97

is important to broaden this discussion a bit and also investigate the emulation
in C++ of facets and idioms from other object-oriented languages, especially
high-level ones such as Java. When it comes to making a decision between C++
and, say, Java, people are often unaware of the fact that to quite an extent, you
can have your cake and eat it. Using C++, it is possible to embed Java idioms
“locally” in your software architecture, wherever appropriate, thus retaining the
best of both worlds. This paper shows how Java’s variable-to-object binding can
be emulated in C++, and it reports on an example from commercial software
development where this emulation was not only successful, but actually critical
in bringing the product to market in a timely fashion and subsequently making
it commercially successful.

2 The Example: Financial Analytics Software

The example on which this paper reports arose during the early design phases
of a financial analytics program. This program is a rather complex desktop
application that consists of a number of different components performing such
diverse tasks as chart display, database access, number crunching, and the like.
As it happens so often in the software industry, the team was expected to achieve
both record time to market and long-term maintainability. Also, in view of the
resources available, it was to be expected that some of the work would have to
be delegated to outside contractors. Given these constraints, it was absolutely
critical to base the architecture on strong modularization. Every effort was made
to design the different components almost like libraries that expose well-defined,
lean interfaces but have little or no knowledge of the context that they are being
used in1.

However, there was one particular kind of object that was going to blatantly
violate this principle of strong modularization, namely, the portfolio object. The
general purpose of the software is to analyze the historical return data of portfo-
lios, and therefore, the one object that lies at the heart of the architecture is the
portfolio object. This is a rather large and memory-intensive object that con-
tains both the numbers that constitute the historical return data of the portfolio
and all manner of qualitative data. Portfolio objects have to be passed around
frequently and in large numbers throughout the entire software, with little or no
respect for module boundaries.

Experiments performed with a simple prototype, combined with some back-
of-the-envelope calculations, produced conclusive evidence that because of the
size and complexity of portfolio objects, passing them around by value was way
too costly in general, both in terms of time and space. The rule was going to
have to be, do not make value copies of portfolio objects. This came as quite an
irritation, for at least three reasons:

1 Good software design pays off in unexpected ways, too: the strongly modularized
architecture was later instrumental in the effortless reuse of components from the
desktop product in the server backend of a related Web product.

98

1. The only way to enforce this rule was to admonish everybody to abide by
it. This meant that the rule was going to create an additional headache for
every single developer on the project, and it was going to be violated anyway.

2. In C++, passing objects by reference throughout a large piece of software
creates lifetime issues that are difficult to track and often end up being the
source of hard-to-find bugs.

3. Given the fact that C++ has an official way to cast away constness, the
const qualifier on a const reference can hardly be considered more than a
hint. Therefore, passing portfolio objects by reference threw open the gates
for anybody to modify a globally shared object from anywhere in the code.
The crux here is that in C++, even if a class is read-only in the sense that
it does not expose any member functions that modify the object’s state,
anybody who holds a reference to an object can still modify it by assigning
to it. That is because in C++, assigning to a reference has value semantics:
it assigns the value of the right hand side to the object referenced by the left
hand side.

While none of the three items above entirely precluded the use of C++
references for passing around portfolio objects, together they were serious enough
to earn the issue a good spot on the list of project risks. At the time, however,
this list was in dire need of having items removed from it rather than added to it.
Fortunately, it is possible to make the problem go away by emulating Java-style
variable binding for objects of this particular class.

3 Variable Binding: Java vs. C++

As far as variable binding is concerned, the difference between C++ and Java
is perhaps best understood by looking at function argument passing. In C++,
function arguments can be passed by value or by reference. Passing by value
holds no surprises and is in fact irrelevant for the problem at hand. Now let us
assume that X is a class that has a public default constructor, copy constructor,
and assignment operator, and a public member function memfoo that modifies
the state of the *this-object. Now consider the following function:

void foo(X& refX)

{

refX.memfoo();

X anotherX;

refX = anotherX;

}

and suppose that foo gets called like this:

X anX;

foo(anX);

99

When the object anX is passed to the function foo, the local reference variable
refX is initialized to refer to the caller’s object anX, just as if we had written

X& refX = anX;

The line

refX.memfoo();

in the definition of foo will modify the caller’s object anX, because that’s what
refX refers to. The interesting part is

X anotherX;

refX = anotherX;

It always surprises me how many seasoned C++ professionals are hesitant or
unsure when asked what these two lines do. The fact of the matter is that the
assignment in the second line has value semantics. The assignment operator of
X is called with a left hand side of anX and a right hand side of anotherX. The
reference variable refX is not reset to refer to anotherX. In fact, there is no way
to achieve that. C++ references can only be initialized, but not redirected. For
references, copy construction and assignment have different semantics. I have
heard people call this behavior unintuitive, irritating, even wrong. Personally,
I am not passionate either way. But I will admit that I find it a bit surpris-
ing that the C++ literature rarely emphasizes this point and, to the best of
my knowledge, makes no attempt to explain the rationale behind this design
decision.

Be all that as it may, the important point for our problem is that Java
behaves differently in this respect. First of all, there is only one way to pass
function arguments in Java. The choice between passing by value and passing
by reference is not offered. Therefore, to turn the example above into valid Java
code, we have to modify the function foo a little:

void foo(X argX)

{

argX.memfoo();

X anotherX = new X();

argX = anotherX;

}

Many Java developers, when asked whether function arguments in Java are
passed by value or by reference, will answer, “by reference.” That’s not too bad
an answer, but interestingly, James Gosling himself begs to differ. In his intro-
ductory Java book, Gosling says ([2], p. 40): “Some people will say incorrectly
that objects in Java are ‘pass by reference.’ [. . .] Java does not pass objects by
reference; it passes object references by value. [. . .] There is exactly one param-
eter passing mode in Java—pass by value—and that helps keep things simple.”

100

The little example above illustrates what that means: in Java, the function foo

and its argument argX behave much like they did before in C++. The one dif-
ference is in the two lines

X anotherX = new X();

argX = anotherX;

The assignment

argX = anotherX;

causes argX to be reset to refer to the object anotherX. The caller’s object anX
is completely unaffected by this assignment. Actually, the object anX can no
longer be accessed at all in the body of foo after argX has been assigned to. As
a matter of fact, all variables in Java, not just function parameters, behave like
this: they are references that get reset when assigned to. Hence James Gosling’s
statement about references that are passed by value.

James Coplien has described this kind of “loose” variable-to-object binding
by saying, “Binding a variable to an object is like sticking a label on it” ([1], p.
134). He was really referring to variable binding in Smalltalk, where, in addition
to the reference-like nature of variables, there is also little or no compile-time
type information associated with a variable. Still, his metaphor works quite well
for Java, too. The difference is that as far as the type model is concerned, Java
behaves pretty much like C++. Therefore, we would have to say that binding a
variable to an object in Java is like sticking a label on it, but each label carries
information about what kind of object it can go on. In other words, as far as
variable binding is concerned, Java is somewhere in the middle between C++
and Smalltalk, combining the loose variable-to-object binding of Smalltalk with
the strong compile-time typing of C++. In view of this situation, it should come
as no surprise that James Coplien’s techniques for emulating Smalltalk-style
variable binding in C++ ([1], Chapter 5) can easily be adapted to do the same
for Java-style variable binding. Before I explain this emulation, I will discuss
why it solved our problem with the portfolio class so well.

4 The Solution: Emulating Java-Style Variable Binding

in C++

Suppose for a moment that we have magically made our portfolio class behave as
if it were a Java class. Then the three problems listed above disappear. Problem
3 is gone by definition: it is no longer possible to modify a referenced object by
assigning to it. Since our portfolio class is read-only in the sense that it does not
expose any non-const methods beyond construction, it is thus not possible at all
for anybody to modify a referenced object. Problem 2, concerning the lifetime
issues of referenced objects, will also disappear because, as we’ll see shortly,
automatic lifetime management via reference-counting comes naturally with the
emulation of Java-style variable binding. Finally, Problem 1 is gone because

101

there isn’t a rule anymore that anyone should have to abide by. Naturally, our
developers wanted to know, and deserved to know, how portfolio variables and
objects behaved. But the answer was ridiculously easy: “Think Java.” That’s
all there was to it, and it wasn’t even a simplification2. In a situation where
not everybody is a Java buff, one may have to refer to a different language, or
even explain the whole thing on a more conceptual level. Either way, the point
is that the developers who use the class in question do not come away with
the impression that there is some bizarre C++ hack at work that they have to
beware of. Instead, variables and objects behave according to an easily stated
and well-understood idiom that is being emulated by the implementation of the
class in a way that is transparent to the client.

5 The Implementation

It turns out that emulating Java-style variable binding in C++ hardly requires
the invention of groundbreaking new techniques. It is, as we will see shortly,
closely related to several well-known and well-understood idioms. However, since
it is not identical to any one of these idioms, I will refer to it by its own acronym
“JSVB,” for “Java-Style Variable Binding.” The bare essence of the implemen-
tation is shown below. For readability, all method implementations are in the
class declarations. In reality, the code is divided into headers and implementation
files in such a way that clients of the Portfolio class will see only a forward
declaration of the PortfolioBody class.

class Body

{

public:

Body() : m_nRefCount(1) {};

virtual ~Body()

{ assert(0 == m_nRefCount); }

void AddRef()

{ AtomicIncrement(m_nRefCount); }

void Release()

{

// Looks too good to be true but is thread-safe

if(0 == AtomicDecrementAndTest(m_nRefCount))

2 This was of course partly because all this happened during the heyday of the Java
hype, when the Java One conference in San Francisco sold out faster than a Ra-
diohead concert. Moreover, every C++ developer at the time harbored some secret
doubts if he or she was missing the boat by writing C++ rather than Java. Therefore,
saying that we were emulating Java here was a subtle psychological trick (unintended,
of course) to boost project morale.

102

delete this;

}

private:

volatile int m_nRefCount;

};

class PortfolioBody : public Body

{

public:

void Load(string strDatabaseID)

{ /* Load from database */ }

// Would compile as non-const. Must rely on coding discipline

// to make this const because Portfolio::Foo() is const.

int Foo(int) const;

};

class Portfolio

{

public:

Portfolio() : m_pBody(NULL){}

void Load(string strDatabaseID)

{

if(m_pBody)

throw DatabaseException("Object not null");

m_pBody = new PortfolioBody;

m_pBody->Load(strDatabaseID);

}

Portfolio(const Portfolio& rhs)

{

m_pBody = rhs.m_pBody;

if(m_pBody)

m_pBody->AddRef();

}

// this’ll end up being virtual...

~Portfolio()

{ if(m_pBody) m_pBody->Release(); }

Portfolio& operator=(const Portfolio& rhs)

{

if(rhs.m_pBody == m_pBody)

103

return *this;

if(m_pBody)

m_pBody->Release();

m_pBody = rhs.m_pBody;

if(m_pBody)

m_pBody->AddRef();

return *this;

}

// Interface methods are forwarded to the body

int Foo(int i) const

{ assert(m_pBody); return m_pBody->Foo(i); }

private:

PortfolioBody* m_pBody;

};

The portfolio class itself holds as its only data member a pointer to an imple-
mentation object. All public member functions, with the exception of construc-
tion, destruction, and assignment, are forwarded to the implementation object.
So far, our JSVB resembles the well-known pimpl (pointer to implementation)
idiom, also known as the compiler firewall idiom. This idiom is discussed in great
detail in Items 26–30 of Herb Sutter’s first book ([3]). Our body class corresponds
to the implementation class in the pimpl idiom. There are two differences. Firstly,
in the pimpl idiom, only the private portion of the class itself is delegated to the
implementation helper class. In our case, the class delegates its implementation
and forwards its entire interface with the exception of construction, destruc-
tion, and assignment to the body class. Secondly, in the pure pimpl idiom, each
object of the class has its own implementation object. In our case, the body
has a reference count and is shared when an assignment or copy construction
takes place. This sharing of body objects makes our implementation reminis-
cent of the time-honored COW (copy-on-write) idiom, which is discussed e.g. in
Items 13–16 of Herb Sutter’s second book ([4]), and also by James Coplien in
[1], where it is called the handle-body idiom. Our Portfolio class corresponds
to the handle, and our PortfolioBody is the body of the handle-body idiom.
The difference between the handle-body, or COW, idiom and our JSVB is that
in the handle-body idiom, the sharing of bodies is merely an optimization that
remains transparent to the client. As soon as the state of the body is modified
through a handle, that handle ceases to share the body and obtains its own copy
instead. In JSVB, there is no such copying. If the state of the body is modified
through a handle, all handles that share this body will see the change. That’s
works-as-designed in Java.

Finally, it should be mentioned that our JSVB also bears a strong resem-
blance to legions of reference-counted smart pointer implementations. The cru-
cial difference here is that our Portfolio class passes itself off as the actual
object, thus saving clients from having to use pointer syntax when working with

104

Portfolio variables. Another way to express this would be to say that our
Portfolio is not a smart pointer, but a smart reference.

Of course it is true that our problem could also have been solved with a
suitable smart pointer to PortfolioBody objects. A similar statement can be
made about dumb pointers and C++-style references: everything that you do
with a C++-style reference could have been achieved with a dumb pointer.
But references were added to C++ for a reason: they are often much more
intuitive than the corresponding pointer solution. The same is true here. From a
pointer, smart or dumb, we expect that we can get a C++-style reference to the
pointee via operator*(). This would have to be suppressed in our case. Java-
style smart references solve the problem in a much more intuitive way. By using
JSVB instead of a specially designed smart pointer, we have lifted the solution
from a technical to a conceptual level.

6 JSVB and Concurrency

The issue of thread-safety and JSVB deserves some comment. The fact that
Java-style variables always and unconditionally behave like references must of
course be taken into account when it comes to protecting objects from concurrent
access. The JSVB implementation is only responsible for making the variable
binding itself thread-safe. For example, consider the following four lines of code:

Portfolio p1;

p1.Load("MSE.FMAGX");

Portfolio p2 = p1;

Portfolio p3 = p1;

Now suppose that the third and fourth lines are executed concurrently in two
different threads. The JSVB implementation is responsible for making this safe,
i.e., the concurrent incrementing of the reference count must be performed cor-
rectly. The use of atomic increment and decrement in the implementation of
the body class ensures that. (It is perhaps a bit surprising at first that this can
be achieved with atomic integer operations alone, without the use of a lock.
The body’s destructor, in particular, may look suspicious to you at first glance.
See e.g. Item 16, Part 4, of Herb Sutter’s second book ([4]) for an explanation
of thread-safety using atomic integer operations only.) If, on the other hand, a
client writes code like this:

Portfolio p1;

p1.Load("MSE.FMAGX");

Portfolio p2;

Portfolio p3;

p3 = p1;

p3 = p2;

105

and the last two lines are executed concurrently without the use of a lock, then
a null pointer may get dereferenced. It is the client’s responsibility to prevent
that. That’s completely intuitive to a C++-programmer: assigning to the same
variable concurrently is not per se safe. Now suppose FooMod were a Portfolio

member function that modified the state of the portfolio body, and consider the
following code:

Portfolio p1;

p1.Load("MSE.FMAGX");

Portfolio p2 = p1;

p1.FooMod();

p2.FooMod();

When the last two lines are executed concurrently, it is the client’s responsibility
to protect the object from being corrupted. From a C++ point of view, this is
surprising, because under C++-style variable binding, p1 and p2 would be two
entirely different objects, and there wouldn’t be a concurrency issue (unless, of
course, FooMod is a function that modifies static or global data). The price one
has to pay for Java-style variable binding is that in a situation like this, there is
a concurrency issue. In our case, this was a moot point because portfolio objects
represent data from persistent storage and are not subject to modification by
the program.

7 Additional Issues

The analogy with Java ends when it comes to constructing Portfolio objects.
The default constructor will create a null reference, as it would in Java. In order
to actually create an object, however, clients must call the member function Load

to read a portfolio from persistent storage. To enforce the read-only nature of
Portfolio objects, Load throws an exception when called on a non-null object.

Java doesn’t have the notion of a const variable or a const member func-
tion. However, when a C++ class emulates Java-style variable binding, as is
the case with our Portfolio class, then variables of that type can and will be
declared as const in the C++ code. Since there is no Java-style behavior to
emulate when it comes to constness, the only guideline is that const variables
with Java-style binding should behave the way a C++ programmer would expect
them to behave:

1. A const variable can only be initialized, but not assigned to.
2. Only const methods can be called on a const object.
3. const methods do not change the state of an object.

Requirements 1 and 2 are satisfied by our JSVB implementation without
further effort. For requirement 3 to be satisfied, it is necessary to insure that
all const methods of the handle class forward to const methods of the body.
Unfortunately, there is nothing in C++ that would allow us to enforce that. The

106

body pointer of a const handle object is a const pointer, but not a pointer
to const. It would certainly be nice to have C++ language support for deep
constness, just as it would be nice to have support for forwarding of member
functions to implementation objects. Until then, we’re on our own with nothing
to rely on other than coding discipline.

Another issue that came up with our JSVB implementation was inheritance.
Needless to say, the portfolio ended up being modeled not by a single class, but by
a class hierarchy. Since our portfolios are always loaded from persistent storage,
and the actual type of the portfolio that is being loaded is not known beforehand,
the notion of virtual constructors also came into play. With our Portfolio, we
were able to deal with all these issues without ever having to compromise the
Java-style variable binding. This is not the place to go into further detail, but
I’ll have to say that our solution did feel somewhat ad hoc in several respects.
The question of how to best deal with inheritance and virtual construction in
the presence of JSVB certainly deserves some more investigation.

8 Conclusion

Java-style variable binding can be emulated for C++ classes and class hier-
archies. Automatic memory management comes naturally with this emulation.
This kind of variable-to-object binding is useful for large read-only objects. Such
objects can then be passed around as Java-style references. This takes care of
time and space efficiency concerns, and it definitively prevents clients from mod-
ifying referenced objects through assignment. For large objects that are not
read-only, Java-style variable binding can still be useful because it provides au-
tomated object lifetime management without requiring clients to use pointer
syntax, as would be the case with smart pointers.

References

[1] Coplien, J.: Advanced C++ Programming Styles and Idioms. Addison-Wesley
(1992)

[2] Arnold, K. and Gosling, J.: The Java Programming Language. 2nd edn. Addison-
Wesley (1997)

[3] Sutter, H.: Exceptional C++. Addison-Wesley (1999)
[4] Sutter, H.: More Exceptional C++. Addison-Wesley (2001)

107

Dynamic Inheritance for a Prototype-based

Language

Koji Kagawa

RISE, Faculty of Engineering
Kagawa University

2217-20 Hayashi-cho, Takamatsu, Kagawa 761-0396
JAPAN

kagawa@eng.kagawa-u.ac.jp

Abstract. ECMAScript (a.k.a. JavaScript) is a prototype-based object-
oriented language. Unlike many other object-oriented languages, it allows
programmers to add new operations to existing objects. Moreover, it
has anonymous functions (i.e. λ-expressions). Due to the combination of
these features, it already supports the functional programming paradigm.
With a small extension, it can also support other paradigms such as lazy
functional and logic programming paradigms by facilitating introduction
of data structures peculiar to these programming paradigms. This paper
proposes such an extension and shows some examples.

1 Introduction

ECMAScript [1], also known as JavaScript, is widely used in order to add dy-
namic behaviours to WWW pages. However, its interesting features as an object-
oriented language are probably less well-known. Among them, prototype-based
inheritance is one of the most interesting. Unlike class-based object-oriented
languages, each object constructor of ECMAScript has a special property (field)
called prototype. If an object created from this constructor is sent a message
and the object itself does not have a corresponding property (i.e. a method or a
field), the message is directed to the constructor’s prototype object. Moreover,
we can freely add new properties to objects including prototype objects on the
fly. In other languages, it is often difficult to add both new variants and new
operations to an existing set of variants and operations without changing source
code. In functional languages, it is easy to add new operations to an existing
datatype while adding a new variant implies modifying many related functions.
On the other hand, in most object-oriented languages, it is easy to add a new
variant as a class while adding new operations requires modifying the classes
which constitute the datatype. This problem — the extensibility problem (e.g.
[4, 18]) — does not exist in ECMAScript1. This means that ECMAScript can
be readily used as an untyped strict functional language.

1 Of course, ECMAScript is an untyped (or a dynamically-typed) language and cannot
be compared on the same level with strongly-typed languages such as Java.

109

As an example, we will define constructors for lists and operations on them
— a datatype popular in functional languages but less frequently used in object-
oriented languages.

In ECMAScript, constructors are just functions which initialize properties of
the implicit argument this.

function Cons(x, xs) {

this.head = x;

this.tail = xs;

}

function cons(x, xs) { return new Cons(x, xs); }

function Nil() { /* do nothing */ }

var nil = new Nil();

The keyword function introduces function definitions. Here, Cons and Nil are
constructor functions. By the new operator, a new object is allocated and passed
to the constructor function. For example, the expression “new Cons(x, xs)”
creates a new object and passes it as this to the Cons function. This expression,
as a whole, returns the object initialized by Cons.

By default, a constructor’s prototype property is initialized to a fresh object
of type Object — the super type of any objects which contains a minimal set of
methods such as toString. Then, we can add methods to the prototype object.
For example, the following code adds isNull and len methods to Cons and Nil.

Nil.prototype.isNull = true;

Cons.prototype.isNull = false;

Cons.prototype.len = function () {

return 1+this.tail.len();

}

Nil.prototype.len = function () {

return 0;

}

Expressions introduced by the keyword function without an identifier such as
“function (. . .) {. . . }” are anonymous functions in ECMAScript. They corre-
spond to “(lambda (...) ...)” in Scheme and “fn ... ⇒ ...” in Standard
ML. The relation among objects is illustrated by the following diagram.

Constructor(Cons)

prototype

new

Prototype Link

head
tail

isNull
len

Prototype Object

Prototype Link

110

Then, “cons(1, cons(2, nil)).len()” evaluates to 2. Thus, though EC-
MAScript does not have pattern matching, thanks to prototype-based inheri-
tance, we can write programs in a way very close to those which use pattern
matching. We do not need to rely on visitor patterns [5] to emulate algebraic
data types and to add new operations to them later.

SpiderMonkey, an implementation of ECMAScript by Netscape, has another
interesting feature, though it is not in the ECMAScript standard. It provides
getter/setter mechanism for defining properties. That is, we can associate func-
tions to a field (instance variable) definition so that these functions are called
when the field is accessed. For example2,

function Foo (x) { this.hidden = x; }

Foo.prototype.x getter = function () {

return this.hidden*2;

}

Foo.prototype.x setter = function (y) {

this.hidden = Math.floor(y/2);

}

function foo(x) { return new Foo(x); }

var a = foo(0);

a.x=9;

print(a.x);

In the second last line, the statement “a.x=9” is evaluated
as if “a.x setter(9),” and “print(a.x)” is evaluated as if
“print(a.x getter())” and outputs 8. In this example, a.x always evaluates
to an even number. Thus, getter/setter mechanism allows properties to be
calculated dynamically.

Currently, SpiderMonkey does not seem to allow getter/setter definition for
the special property prototype. However, if the prototype property can be
computed dynamically, an interesting programming technique becomes possible.
We will show that we can define wrappers to simulate lazy data structures and
logical variables — data structures peculiar to lazy functional and logic program-
ming languages respectively. By using those wrappers, most existing functions
for the base datatype (e.g. list) can be reused, as they are, for the derived
datatype (e.g. lazy list). Instead, if we were forced to rewrite library functions
for the derived datatype, or to insert coercions from the derived type to the base
type in all necessary places, it would be a very painful task for programmers.

SELF [15] is also a prototype-based language. The idea of “dynamic inheri-
tance” that the prototype object can be changed dynamically was used in [14]3

in order to implement “multiple behaviour modes” in SELF. There, for example,

2 JavaScript 2.0 (http://www.mozilla.org/js/language/js20/) proposal uses the
syntax “get name” instead of “name getter.” The syntax “name getter” is used
in the current version (1.5 pre-release 4a) of SpiderMonkey.

3 The author would like to thank an anonymous referee for suggesting a reference.

111

the prototype of a polygon object is changed between a boxed polygon and a
smooth polygon. Then the appearance of a polygon on the screen changes.

In the following in this paper, dynamic inheritance is used in order to im-
plement more abstract wrappers. Prototypes can be even created on the fly.
In some respect, the proposal resembles mixins [2, 4] since it can extend any
existing datatype. However, the intention of our wrappers is to change the be-
haviour of existing methods slightly, while mixins usually add new methods to
existing classes. In this sense, our proposal can be called decorator mixins since
it implements a generic decorator pattern.

The rest of the paper is organized as follows. Section 2 introduces dynamic
prototype into ECMAScript and defines a wrapper for lazy data structures (de-
layed computation). Section 3 shows some examples. Section 4 gives a definition
of wrappers for logical variables. Section 5 concludes and gives future directions.

2 Dynamic Prototype

We define a constructor for the “delay” wrapper as follows.

function Delay(f) {

this.memo = null;

this.f = f;

}

function delay(f) { return new Delay(f); }

function force(x) {

if (x.memo==null) { x.memo = x.f(); }

return x.memo;

}

This is a standard definition found in many strict functional languages such as
Scheme [9] and ML [12, 10]. It uses the field memo to avoid repeated invocation
of the delayed computation f. (This is a simplified version — actually, further
care must be taken when the delayed computation refers to its own result or
when it throws an exception.) By wrapping lists with this object, we can obtain
lazy lists. For example, we can define an infinite list of numbers [n, n + 1, . . .]
as follows:

function from(n) {

return delay(function () { return cons(n, from(n+1)); });

}

(Note that this definition is in the even style in the terminology of [16]. On the
other hand, the odd style definition is as follows:

// function from(n) {

// return cons(n, delay(function () { return from(n+1)); });

// }

112

In general, the even style definitions delay more computation and are easier to
use.)

Lazy data structures are a very useful programming technique especially
in functional programming languages. In [7], it is even claimed as “the most
powerful glue functional programmers possess.” Therefore, it is important to be
able to treat lazy data structures as first-class citizens. In practice, however,
lazy data structures are not used so frequently in strict programming languages.
This is probably because we cannot reuse existing rich library functions for the
standard lists and therefore we must redefine huge amount of library functions
for such a variation of list. In prototype-based languages such as ECMAScript,
however, where we can add necessary methods to existing datatypes later, we
can avoid such repeated definition of essentially the same functions.

To be more specific, we can make methods such as head and tail directly
applicable to delay objects so that expressions such as “from(1).head” and
“from(1).tail.tail.head” are possible. Of course, this is made possible by
defining head and tail methods for Delay.prototype.

// Delay.prototype.head getter = function () {

// return force(this).head;

// }

// Delay.prototype.tail getter = function () {

// return force(this).tail;

// }

However, this is somewhat strange and inconvenient — if delay is used to wrap
objects of another type such as Tree, further methods must be added for Delay.
Since Delay itself is generic, it breaks modularity. Moreover, the number of the
properties to be defined is much larger in practice, and it becomes cumbersome to
redefine all the properties. If we can compute the prototype object dynamically,
such tedious tasks can be avoided completely.

As a first try, we might like to write:

// Delay.prototype getter = function () {

// return force(this);

// }

The intention here is as follows. When an object does not have a property in
itself and we need the prototype property of Delay, the above getter function
for prototype is called with this bound to the object which is initially sent a
message.

Unfortunately, there is a problem here. In the ordinary semantics of EC-
MAScript, this above is bound to the constructor function Delay itself and not
to the object initialized by Delay.

In this paper, we propose the following extension — if the constructor’s
prototype property is a function object which takes one parameter, it is called
with the argument representing this object and its return value is used as
prototype when looking up a property. We will call this feature dynamic pro-
totype. Then, we can replace the above definition by:

113

Delay.prototype = force;

The situation is illustrated by the following diagram.

Delay

prototype

new

Prototype Link

Prototype Object
(force)

Dynamic Prototype

True Prototype
Object

Cons

new head, tail

When “from(1).head” is evaluated, “from(1).f ()” is computed via force

and the head property of the result of this call is returned. It is worth emphasiz-
ing here that library functions which are defined for non-lazy list, for example,

function take(xs, n) {

if (n==0) {

return nil;

} else {

return cons(xs.head, take(xs.tail, n-1));

}

}

function listToString(xs) {

var buf = "[", str = "";

for (; !xs.isNull; xs=xs.tail) {

buf += (str+xs.head);

str = ", ";

}

return buf+"]";

}

can be reused, without any modification, to lazy lists. Without dynamic proto-
type, such library functions must be all rewritten, which discourages program-
mers to use lazy data structures.

3 Examples

In this section, we will show how the sieve of Eratosthenes — a very standard
programming example for lazy functional languages — is defined in our extended
ECMAScript.

First, we define standard library functions for lazy lists as follows:

114

function map(f, xs) {

return delay(function () {

if (xs.isNull) {

return nil;

} else {

return cons(f(xs.head), map(f, xs.tail));

}

});

}

function filter(p, xs) {

return delay(function() {

if (xs.isNull) return xs;

else if (p(xs.head)) {

return cons(xs.head, filter(p, xs.tail));

} else {

return filter(p, xs.tail);

}

});

}

function iterate(a, f) {

return delay(function() {

return cons(a, iterate(f(a), f));

});

}

The expression map(f, xs) applies function f to all the elements in xs and
returns the list which contains the results, filter(p, xs) returns the list of
elements of xs which satisfies the predicate p, and iterate(a, f) returns the
infinite list [a, f(a), f(f(a)), f(f(f(a))), ...].

The list of prime numbers can be defined as follows:

function sieve(xs) {

return filter(function (x) {

return x % xs.head != 0;

}, xs);

}

var primes = map(function(x) { return x.head; },

iterate(from(2), sieve));

The expression primes itself is an infinite list, and
“listToString(take(primes, 10))” evaluates to "[2, 3, 5, 7, 11,

13, 17, 19, 23, 29]". Note again that listToString and take are defined
with strict lists in mind.

115

4 Logical Variables

We can also define wrapper constructors for logical variables — variables which
may be instantiated to other objects or unified with other logical variables like
variables in Prolog.

function Unknown0() { /* auxiliary constructor */ }

Unknown0.prototype = function (self) { return self.link; }

function Unknown() { this.link = null; }

function unknown() { return new Unknown(); }

Unknown.prototype = new Unknown0 ();

Unknown.prototype.bind = function (y) {

if (this.link==null) {

this.link = y;

return true;

} else return false;

}

function Known0() { /* auxiliary constructor */ }

Known0.prototype = function (self) { return self.value; }

function Known(v) { this.value = v; }

function known(v) { return new Known(v); }

Known.prototype = new Known0 ();

In this example, since some methods must be defined for Known and Unknown,
we need auxiliary constructors Known0 and Unknown0. There is a static proto-
type before accessing a dynamic prototype. This is illustrated by the following
diagram.

Known,Unknown

prototype

new

Prototype Link
(Static)

Prototype Object

Dynamic Prototype

prototype

new

Prototype Object
(Function)

Known0,Unknown0

unify

Though the two constructors Known and Unknown are similar at a glance, the
link field of Unknown is mutable and is bound to objects of Unknown or Known

116

while the value field of Known is immutable and is initialized to objects of other
types. We define unify method for Known and Unknown as follows.

Unknown.prototype.deref = function () {

if (this.link==null) return this;

else return this.link.deref;

}

Known.prototype.deref = function () { return this; }

Known.prototype.unify = function(y) {

return y.unifyAux(this);

}

Unknown.prototype.unify = function(y) {

if (this===y) return true;

if (this.link == null) return this.bind(y.deref());

return this.link.unify(y);

}

Known.prototype.unifyAux = function(x) {

return x.value.unifyStructure(this.value);

}

Unknown.prototype.unifyAux = function(x) {

if (this.link==null) return this.bind(x);

else return this.link.unifyAux(x);

}

We assume that unifyStructuremethod is defined for the constructors involved
in unification which recursively invokes unify for their each field. The definitions
of unifyStructure for Cons and Nil are as follows:

Object.prototype.unifyStructure = function(y) {

return this==y; /* default unifyStructure */

}

Cons.prototype.unifyStructure = function(y) {

return y.unifyCons(this.head, this.tail);

}

Nil.prototype.unifyStructure = function(y) {

return y.isNull();

}

Cons.prototype.unifyCons = function(x, xs) {

return x.unify(this.head) && xs.unify(this.tail);

}

Nil.prototype.unifyCons = function(x, xs) {

return false;

}

117

Then, we can write programs which use unification — very powerful tool avail-
able in logic programming languages such as Prolog. For example,

var ws = unknown();

var xs = known(cons(known("foo"), ws));

var y = unknown();

var ys = known(cons(y,

known(cons(known("bar"),

known(cons(known("baz"), known(nil)))))));

After “xs.unify(ys)” is evaluated, “y.toString()” evaluates to "foo" and
“listToString(ws)” is "[bar,baz]".

It is known that operators to handle first-class continuations such as call/cc
in Scheme [9], especially those for composable continuations (shift and reset)
[3] can make backtracking expressible [6] — backtracking is another powerful
tool in logic programming languages. If both first-class continuations and dy-
namic prototype are available, we will be able to simulate Prolog programs in
ECMAScript and to apply the standard list library functions to the results of
such a code fragment.

5 Conclusion and Future Work

ECMAScript can be already regarded as a (strict) functional language. — it
provides λ-expressions (anonymous functions) and the ability to add new opera-
tions later to existing objects. With a small extension, we have shown that, it can
also simulate more easily other programming paradigms such as lazy functional
and logic programming paradigms. So far, to the author’s knowledge, studies on
multi-paradigm programming have often concentrated on simulation of control
structures such as lazy evaluation and back-tracking. However, simulation of data
structures is equally important. The extension proposed in this paper facilitates
simulation of data structures peculiar to other programming paradigms.

The idea is just to allow the prototype property to be computed dynamically
from other properties of the object. It is even possible to create a new object
dynamically and to use it as a prototype as is done for Delay.

A similar idea is proposed by the author [8] as an extension of the system
of polymorphic variants (extensible algebraic datatypes) for a purely functional
language Haskell. The idea is to convert a value into another variant during
pattern-matching when a matching pattern does not exist. Though lazy data
structures do not need to be simulated in Haskell since it is already a lazy
language, it helps to simulate an imperative program in a purely functional
language. It is interesting that similar ideas can be used in both purely functional
and object-oriented languages to simulate other programming paradigms.

There are some points to be worked on, however. First, efficiency must be
considered. Most ECMAScript implementations seem to use a cache in order
to make property look-up fast. If prototype is computed dynamically, use of a
cache is not so much effective. However, it is likely that as for data structures

118

which use dynamic prototypes, the prototype chains tend to be short. Therefore,
hopefully, lack of cache has a very little effect on efficiency.

It would be possible to adopt part of the proposal of this paper to class-based
object-oriented languages at value level by simply specifying how the object is
transformed when the current class does not have a necessary method. However,
most class-based languages such as Java are strongly-typed and then we also
need type checking. To type wrapper constructors such as Delay, at least, we
would need the notion of parametric (generic) classes. Therefore, the design of
a type checking algorithm is not trivial.

Though we have seen that ECMAScript can be used as a functional lan-
guage, the most distinct difference with genuine functional languages such as
ML [11] and Haskell [13] is that of the type systems. In ML and Haskell, type
inference is done at compile time and no type error will take place at run-time.
Designing a type inference algorithm or a soft typing algorithm [17] for (a subset
of) ECMAScript including dynamic prototyping would be an interesting future
research topic.

ECMAScript is often misunderstood as a dirty and ad-hoc language. How-
ever, it is the interface to the real world (e.g. the browser) that is dirty and
we can say its core is a tidy object-oriented language. If it is strengthened prop-
erly (probably with facilities to help debugging), it may be even suitable for an
educational purpose since it supports multi-paradigm programming to a certain
extent.

References

[1] ECMAScript language specification, 3rd edition, 1999. available form http://

www.ecma.ch/.
[2] Gilad Bracha and William Cook. Mixin-based inheritance. In Proceedings of

the ACM Conference on Object-Oriented Programming: Systems, Languages, and
Applications (OOPSLA) 1990, 1990.

[3] Andrzej Filinski. Representing monads. In Annual ACM Symp. on Principles of
Prog. Languages, January 1994.

[4] Robert Bruce Findler and Matthew Flatt. Modular object-oriented programming
with units and mixins. In Proceedings of the 1998 ACM SIGPLAN International
Conference on Functional Programming (ICFP ’98), 1998.

[5] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns
— Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[6] Ralf Hinze. Prological features in a functional setting axioms and implementa-
tions. In Third Fuji International Symposium on Functional and Logic Program-
ming, pages 98–122, 1998.

[7] John Hughes. Why functional programming matters. The Computer Journal,
32(2):98–107, April 1989.

[8] Koji Kagawa. Shrinkable polymorphic variants. In Proceedings of JSSST Work-
shop on Programming and Programming Languages (PPL 2002), March 2002. (in
Japanese).

[9] Richard Kelsey, William Clinger, Jonathan Rees, et al. Revised5 report on the
algorithmic language Scheme, Feb 1998.

119

[10] Xavier Leroy, Damien Dolegez, Jacques Garrigue, Didier Rémy, and Jérôme Vouil-
lon. The Objective Caml system, release 3.00 Documentation and user’s manual.
INRIA, April 2000.

[11] Robin Miler, Mads Tofte, Robert Harper, and David MacQueen. The Definition
of Standard ML – Revised. MIT Press, 1997.

[12] Lawrence C. Paulson. ML for the Working Programmer – 2nd Ed. Cambridge
University Press, 1996.

[13] Simon Peyton Jones, John Hughes, et al. Haskell 98: A Non-strict, Purely Func-
tional Language, February 1999. http://www.haskell.org/onlinereport/.

[14] David Ungar, Craig Chambers, Bay-Wei Chang, and Urs Hölzle. organzing pro-
grams without classes. List and Symbolic Computation, 4(3), 1991.

[15] David Ungar and Randall B. Smith. Self: the power of simplicity. Lisp and
Symbolic Computation, 4(3), 1991.

[16] Philip Wadler, Walid Taha, and David MacQueen. How to add laziness to a strict
language, without even being odd. In Workshop on Standard ML, Baltimore,
September 1998.

[17] Andrew K. Wright and Robert Cartwright. A practical soft type system for
scheme. In Proc. ACM Conference on Lisp and Functional Programming, pages
250–262, June 1994.

[18] Matthias Zenger and Martin Odersky. Extensible algebraic datatypes with de-
faults. In Proceedings of the International Conference on Functional Programming,
September 2001.

120

A case in Multiparadigm Programming :

User Interfaces by means of Declarative Meta

Programming

S. Goderis ?, W. De Meuter, J. Brichau

Programming Technology Lab, Vrije Universiteit Brussel, Belgium

Abstract. Because there is currently no formal way to specify user
interfaces, nor a clean way to decouple a user interface from its appli-
cation code, we propose in this position paper the use of Declarative
Meta Programming (DMP) to solve these problems. DMP uses facts
and rules to write down a user interface in a declarative way, and will
provide a more formal way to specify user interfaces. Furthermore DMP
cleanly separates user interface from application code. The Declarative
Meta Programming language SOUL that we intend to use, combines the
declarative paradigm (for the user interface specification) and the object-
oriented paradigm (for the application code). This position paper thus
describes a case in multiparadigm programming.

1 Introduction

Although our knowledge concerning software engineering tasks has grown con-
siderably during the last 20 years, few of these techniques are applied onto User
Interfaces. Currently we distinguish two major problems with User Interfaces,
namely

– the lack of a clean way to separate and couple the user interface and its
underlying application, and

– the lack of a clear, powerful and uniform formalism to specify user interfaces.

Solving the first problem will benefit the independent evolution of the user in-
terface and the application code. Even ‘clean’ separations like the Model-View-
Controller pattern still have the problem that the underlying model code is
interspersed with ‘changed-messages’. A lot of user interface builders provide
graphical tools for the development of user interfaces, but mainly they only gen-
erate stubs for procedures and methods. These stubs have to be coded manually
by the software engineer in order for the user interface and the application to
be coupled. Changing the user interface then results in manually changing this
generated, and often unreadable, code. Current user interface builders lack a
clean way to couple the user interface with the application code.

? Author is financed with a doctoral grant from the Institute for the Promotion of
Innovation by Science and Technology in Flanders (IWT)

121

Solving the second problem will allow a non-programmer to build complete
user-interfaces containing all necessary functionality that should otherwise be
programmed. Furthermore, a uniform formalism for specifying user interfaces
will benefit the porting of user interfaces to various graphical platforms (pc,
mac, web, handhelds, mobiles,...). Since the desired formalism is to specifically
express the description of user interfaces, a declarative formalism would be
the most appropriate. A declarative programming language would even be
better because it provides an executable declarative formalism and, as such,
provides a user-interface specification language. The major advantage of using
a complete language for specifying user interfaces is that it permits to write
down more powerful descriptions of the dependencies and relations between the
different user interface components. It also permits us to create abstractions
from the low-level descriptions of user interface components to high-level
descriptions of compositions of user interface components. Having different
levels of abstractions will allow to easily replace one of the levels with a new
set of declarations. Lower levels will be more platform dependent, and chang-
ing platforms will result in changing these lower levels while the higher levels
can be kept. Thus there will be no need to rewrite the user interface specification.

In this position paper we state that creating a user interface for an application
is a multiparadigm problem where

– the user interface is to be written down declaratively,
– the model is to be coded manually, and
– the coupling (how and where) of the user interface with the model is to be

written down declaratively.

This approach requires the object-oriented paradigm for coding the model, and
the declarative paradigm for writing down the user interface and the coupling.
We will thus use a multiparadigm programming language combining both pa-
radigms, namely a Declarative Meta Programming language. At Programming
Technology lab several researchers have been using this paradigm for several
purposes, such as code generation [2], co-evolution between design and imple-
mentation [8], aspect-oriented programming [1, 5], component-based develop-
ment [7], etc. One of the artifacts build for this paradigm is the Smalltalk Open
Unification Language (SOUL) which is the one we will focus on for our approach.

In section 2 we introduce the SOUL declarative programming language, which
we will use in section 3 to specify and generate user interfaces. We conclude in
section 4.

2 Smalltalk Open Unification Language

SOUL is a declarative meta layer on top of Smalltalk. It provides a prolog-
alike programming language [4] and thus has all the properties of a declarative
language. Logic facts are used to write down data or knowledge, while rules
are used to reason about these facts and derive new facts. Furthermore SOUL

122

is implemented as a meta layer on top of Smalltalk, and it provides reflection
and introspection operators [9]. Therefore it is possible to access the underlying
Smalltalk system for retrieving information and adapting the underlying system
according to the descriptions and rules at the upper level. This implies that,
based on the rules and facts of the SOUL level, it is possible to generate code
on the Smalltalk level. For more details (and the syntax) we refer to [8].

The Quoted term is a logic term in SOUL that we will most extensively use for
our approach. It is a special logic term that was specifically included in SOUL
to ease the manipulation of program source code by logic programs. It is similar
to the quasi-quoted list in Scheme, which also represents programs as datastruc-
tures. The quoted term allows for writing down Smalltalk code as it is without
it being evaluated. This construct can contain any kind of strings, possibly with
some logic variables that are ‘filled in’ by the logic inference process. Templates
(quoted terms with source code and logic variables) in combination with the sub-
stituted variables will result in ‘real’ code. Slightly changing the facts and rules
will generate different code. In the following example firing the query addClass

will result in a quoted term (between curly braces) containing the Smalltalk code
that, if executed, will add a subclass Matrix to the super class Array.

addNewClass(Array, Matrix).

addClass({?super subclass: #?className }) if

addNewClass(?className, ?super),

class(?super)

3 DMP for User Interfaces

Model-based user interface development environments (MB-UIDEs) provide a
context where developers can design and implement user interfaces in a system-
atic way, and more easily than when using traditional user interface development
tools [6]. To achieve this aim, MB-UIDEs allow to describe the user interfaces
through the use of declarative models. Pinheiro names three major advantages
when using declarative user interface models [6] :

– A more abstract description of the user interface is provided ;
– User interfaces can be modelled using different levels of abstraction; the

models can be refined incrementally; and user interface specifications can be
re-used ;

– tasks related to the user interface design and implementation processes can
be automated.

The idea behind MB-UIDE’s is to be able to specify, generate and execute user
interfaces.

As mentioned before we also want to use a declarative approach, namely
Declarative Meta Programming, for specifying and generating user interfaces.

123

Since we tend to use SOUL, we intend to have a application coded in Smalltalk.
SOUL itself will be used to write down the user interface specification and the
coupling between user interface and application in a declarative way. We distin-
guish three parts of logic code, namely

– facts representing the user interface specification,
– facts representing the hooks in the application code, and
– rules expressing how to generate the code to combine both parts.

Hooks in the application code are certain points where calls to the user interface
can be made, or where event handling (calls from the user interface) can be taken
care of. Together with the coupling rules these hooks will ensure that the user
interface is plugged onto the application. The user interface specification itself
can consist of different layers, which allows for different abstraction levels.

3.1 User Interface specification

We will have to determine how the specification of different kinds of user in-
terfaces can be put into a logic format, i.e. by the use of facts and rules. User
interface specifications can range from elementary and simple knowledge (e.g.
a title) to very advanced specifications (e.g. this circle always has to be cen-
tered in that rectangle). Elementary specifications are for example HTML and
XML specifications, often used for web based user interfaces. Transforming these
syntax-trees (what they basically are) into logic facts can easily be done by in-
tegrating a simple parser into SOUL. More advanced specifications that are
represented by user interface builders can be transformed unambiguously into
logic facts by means of transforming the structures used by these builders. An-
other kind of advanced specifications are constraints, which are, up to a certain
degree, easily expressible by the use of logic programming.

For example a simple declaration for a user interface component button can
be :

button(?name, ?label).

style(?name, ?style).

size(?name, ?size).

color(?name, ?color).

This specification indicates that there is a button with a name ?name which
has a label, a style (font of the label), size and a color.

A Formalism for User Interface specifications Declarative user interface specifi-
cations provide a more formal way of writing down user interfaces. This kind of
formal specification is a major disadvantage of user interface builders these days.
Graphical user interface builders provide a limited set of components which can
not be altered by the user. Typically these builders use their own internal data
structures, and the provided ‘drawingtools’ on top of these structures are not a

124

sufficient formal medium to specify user interfaces. A declarative approach com-
bines the powerfulness of programming languages with the intuitivity of graph-
ical tools. We do acknowledge that as an end tool a graphical user interface is
wished for, but it can easily generate logic declarations.

For example, because SOUL is a programming language we can specify a rule
for the previous example that declares all button properties to be obligatory :

isButton(?aButton) if

button(?aButton, ?),

style(?aButton, ?),

size(?aButton, ?),

color(?aButton, ?).

Different abstraction levels DMP also allows for different levels of abstraction.
For the specification of user interfaces this is important because it will lead
towards a more clean specification, but it also allows for easier generation of
different kinds of user interface code. For instance we can specify a simple user
interface consisting of a title, a textbox and two buttons :

title(uiTitle, ‘This is a simple user interface’).

textbox(goOn, ‘Do you want to continue?’).

button(yesButton, ‘yes’).

button(noButton, ‘no’).

color(uiTitle, green).

color(yesButton, grey).

color(noButton, grey).

size(yesButton, 2cm).

color and size specify properties of these lower level (possibly visual) com-
ponents.

For often used combinations of components we can specify higher level con-
cepts such as questions, actions, dependencies, listings, etc. For instance, the
textbox and two buttons from the previous example express the higher level
concept question. In logic this question can be specified in terms of a textbox
and buttons :

question(q, ‘do you want to continue?’).

textbox(?name, ?questionText) if

question(?q, ?questionText).

button(?name, yes) if

question(?q, ?questionText).

button(?name, no) if

question(?q, ?questionText).

The textbox and button rules are the transformation between the two layers
of abstraction.

125

DMP also allows more powerful declarations. For instance the use of variables
allows to express similar specifications by one specification only. For example,
changing the color of the whole user interface to blue can easily be expressed by

color(? , blue).

instead of rewriting this fact for each element of the interface. This is ex-
tremely handy if we want to create a consistent user interface with the same
‘look and feel’ for multiple subcomponents.

We can also decide to let a property of a certain component depend on the
property of another component. In

size(aTextbox, ?size) if

size(aWindow, ?size).

the size of aTextbox depends on the size of aWindow. By the use of quoted
terms it is possible in SOUL to let the size be a piece of Smalltalk code that will
have to be executed at the time the size is really needed. For aWindow we could
retrieve the size from the underlying Smalltalk system with

size(?aWindow, {?model windowSize}) if

model(?aWindow, ?model).

A more powerful example illustrating the same idea is the following :

relativeSize(?comp1, ?comp2, 0.5).

size(?comp1, {?model windowSize * ?ratio}) if

relativeSize(?comp1, ?comp2, ?ratio),

model(?comp2,?model).

size(?comp2, {?model windowSize}) if

relativeSize(?, ?comp2, ?),

model(?comp2,?model).

It expresses the dependency between two components where comp1 has 0.5
times the size of comp2. Calculating the actual size of these components then
depends on this relative size, and a size we supposedly retrieve from a class
bound to ?model.

Facts and rules referring to the underlying system are part of the coupling
between the user interface specification and the underlying application code.
These kind of rules and facts would have to reside at the lowest level of the
user interface specification because it implies that it is known we are using
Smalltalk user interface code. Using DMP for the generation of another kind of
user interface code implies changing these levels. The lower level abstractions
will be more user interface dependent (platform-dependent).

126

3.2 Generating User Interface code

As was stated by De Volder, DMP naturally supports Generative Programming
[3]. After all we do want to be able to generate user interface code based on the
user interface specification, whether it be HTML, Smalltalk code or something
else.

In order to generate the user interface code, we will need to annotate the
application code with logic facts which will represent the hooks onto which to
plug the user interface. Using the code generation techniques of DMP, both
user interface and application code will be linked. Since user interface configu-
ration resides at the logic level, launching a query will generate the right code
based on this configuration. Slightly changing the configuration will result in
the generation of different code. The kind of user interface code that has to be
generated will depend on the interface. For web based user interfaces it is pos-
sible that generating HTML or XML is sufficient, other interfaces will require a
more advanced model (e.g. a Model-View-Controller pattern). These interfaces
are independent from the underlying application and the different parts can be
evolved and maintained rather independently from one another.

As an example, consider following rules that are part of a logic program that
generates Smalltalk user interfaces from our specification in logic facts and rules:

method(?model, openView,

{ win := ?kindOfWindow new.

win label: ?title.

?subwindowsAdditionCode win open}) if

baseWindow(?uiName,?kindOfWindow),

title(?uiName,?title)

model(?uiName,?model),

findall(?subwindowCode, subWindow(?uiName,?subwindowCode),

?subwindowsAdditionCode)

subWindow(?superId,

{win addWindow: (?kindOfWindow new)

atPositions: #(?x1,?x2,?y1,?y2). }) if

embed(?superId,?subId,?x1,?x2,?y1,?y2)

kindOfWindow(?subId,?kindOfWindow).

Launching the query if method(?class,?methodName,?code) will return
all necessary methods that need to be generated in the Smalltalk application
to build the user interface that we specified. A kind of code-generator will do
exactly this and compile the resulting code. How the user interface window, with
possible subwindows is to be created, is specified by using the quoted term. The
kind of window that is to be generated, its title and model are specified by other
logic facts. The same holds for the subwindow’s position and kind of window.

127

We would like to stress that this is a tentative example and our approach
needs to be elaborated. However, the same kind of technique was applied on
components by De Volder [2].

4 Conclusion

Currently there is no way to easily specify uster interfaces formally, nor is there
a clean way to decouple a user interface from its underlying application. In this
position paper we propose the use of Declarative Meta Programming as a solution
for these problems. DMP allows to write down user interface specifications in a
declarative way by the use of facts and rules, and thus gives us a more formal
way to write down user interfaces. In addition DMP cleanly separates the user
interface from its underlying application and provides a means to generate the
user interface code coupled with this application. Building user interfaces in
this way is a case of multiparadigm programming. The declarative paradigm
is combined with the object-oriented paradigm, and user interface specification
is decoupled from the user interface code, and decoupled from the application
code. We used SOUL as a multiparadigm programming language to put this into
effect.

References

[1] J. Brichau. Declarative meta programming for a language extensibility mechanism.
In ECOOP 2000, Workshop on Reflection and Meta Level Architectures, 2000.

[2] K. De Volder. Type-Oriented Logic Meta Programming. Phd thesis, Programming
Technology Lab, Vrije Universiteit Brussel, September 1998.

[3] K. De Volder. Generative logic meta programming. In ECOOP 2001, Workshop
on Generative Programming, 2001.

[4] P. Flach. Simply Logical. John Wiley and sons, 1994.
[5] K. Gybels. Aspect-Oriented Programming using a Logic Meta Programming Lan-

guage to express cross-cutting through a dynamic joinpoint structure. Bachelors
thesis, Programming Technology Lab, Vrije Universiteit Brussel, August 2001.

[6] P. Pinheiro da Silva. User Interface Declarative Models and Development En-
vironments: A Survey. In P. Palanque and F. Paternò, editors, Proceedings of
DSV-IS2000, volume 1946 of LNCS, pages 207–226, Limerick, Ireland, June 2000.
Springer-Verlag.

[7] M. J. Presso. Reflective and Metalevel Architecture in Java: from Object to Com-
ponents. Master thesis, Programming Technology Lab, Vrije Universiteit Brussel,
1999.

[8] R. Wuyts. A logic meta-programming approach to support the co-evolution of
Object-Oriented design and implementation. Phd thesis, Programming Technol-
ogy Lab, Vrije Universiteit Brussel, January 2001.

[9] R. Wuyts and S. Ducasse. Symbiotic reflection between an object-oriented and a
logic programming language. In ECOOP 2001 International workshop on Multi-
Paradigm Programming with Object-Oriented Languages, 2001.

128

NIC-Series John von Neumann Institute for Computing

Already published:

Modern Methods and Algorithms of Quantum Chemistry - Proceedings
Johannes Grotendorst (Editor)
NIC Series Volume 1
Winterschool, 21 - 25 February 2000, Forschungszentrum Jülich
ISBN 3-00-005618-1, February 2000, 562 pages

Modern Methods and Algorithms of Quantum Chemistry -
Poster Presentations
Johannes Grotendorst (Editor)
NIC Series Volume 2
Winterschool, 21 - 25 February 2000, Forschungszentrum Jülich
ISBN 3-00-005746-3, February 2000, 77 pages

Modern Methods and Algorithms of Quantum Chemistry -
Proceedings, Second Edition
Johannes Grotendorst (Editor)
NIC Series Volume 3
Winterschool, 21 - 25 February 2000, Forschungszentrum Jülich
ISBN 3-00-005834-6, December 2000, 638 pages

Nichtlineare Analyse raum-zeitlicher Aspekte der
hirnelektrischen Aktivität von Epilepsiepatienten
Jochen Arnold
NIC Series Volume 4
ISBN 3-00-006221-1, September 2000, 120 pages

Elektron-Elektron-Wechselwirkung in Halbleitern:
Von hochkorrelierten kohärenten Anfangszuständen
zu inkohärentem Transport
Reinhold Lövenich
NIC Series Volume 5
ISBN 3-00-006329-3, August 2000, 145 pages

131

Erkennung von Nichtlinearitäten und
wechselseitigen Abhängigkeiten in Zeitreihen
Andreas Schmitz
NIC Series Volume 6
ISBN 3-00-007871-1, May 2001, 142 pages

Multiparadigm Programming with Object-Oriented Languages - Proceed-
ings
Kei Davis, Yannis Smaragdakis, Jörg Striegnitz (Editors)
NIC Series Volume 7
Workshop MPOOL, 18. May 2001, Budapest
ISBN 3-00-007968-8, June 2001, 160 pages

Europhysics Conference on Computational Physics- Book of Abstracts
Friedel Hossfeld, Kurt Binder (Editors)
NIC Series Volume 8
Conference, 5 - 8 September 2001, Aachen
ISBN 3-00-008236-0, September 2001, 500 pages

NIC Symposium 2001
Horst Rollnik, Dietrich Wolf (Editors)
NIC Series Volume 9
Symposium, 5 - 6 December 2001, Forschungszentrum Jülich
ISBN 3-00-009055-X, in preparation

Quantum Simulations of Complex Many-Body Systems: From Theory to
Algorithms - Lecture Notes
Johannes Grotendorst, Dominik Marx, Alejandro Muramatsu (Editors)
NIC Series Volume 10
Winter School, 25 February - 1 March 2002, Kerkrade
ISBN 3-00-009057-6, February 2002, 548 pages

Quantum Simulations of Complex Many-Body Systems: From Theory to
Algorithms - Poster Presentations
Johannes Grotendorst, Dominik Marx, Alejandro Muramatsu (Editors)
NIC Series Volume 11
Winter School, 25 February - 1 March 2002, Kerkrade
ISBN 3-00-009058-4, February 2002, 194 pages

132

Strongly Disordered Quantum Spin Systems in Low Dimensions: Numer-
ical Study of Spin Chains, Spin Ladders and Two-Dimensional Systems
Yu-cheng Lin
NIC Series Volume 12
ISBN 3-00-009056-8, March 2002, 146 pages, in preparation

All volumes are available online at http://www.fz-juelich.de/nic-series/.

133

