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Abstract—Roadrunner is a 1.38 Pflop/s-peak (double 
precision) hybrid-architecture supercomputer developed by 
LANL and IBM. It contains 12,240 IBM PowerXCell 8i processors 
and 12,240 AMD Opteron cores in 3,060 compute nodes. 
Roadrunner is the first supercomputer to run Linpack at a 
sustained speed in excess of 1 Pflop/s. In this paper we present a 
detailed architectural description of Roadrunner and a detailed 
performance analysis of the system. A case study of optimizing the 
MPI-based application Sweep3D to exploit Roadrunner’s hybrid 
architecture is also included. The performance of Sweep3D is 
compared to that of the code on a previous implementation of the 
Cell Broadband Engine architecture—the Cell BE—and on multi-
core processors. Using validated performance models combined 
with Roadrunner-specific microbenchmarks we identify 
performance issues in the early pre-delivery system and infer how 
well the final Roadrunner configuration will perform once the 
system software stack has matured. 

Keywords—Petascale computing, heterogeneous, accelerators, 
performance analysis, Roadrunner. 

I.  INTRODUCTION 
Breaking the barrier of a petaflop has been a grand 

challenge in high-performance computing  for the last several 
years. There are several projects aimed to deliver petaflop or 
multi-petaflop performance in the near future, such as the 
machines being developed in the DARPA High Productivity 
Computing Systems program [1]. The quest for systems in the 
petaflop regime and beyond is driven by important challenges 
in science that could be addressed with large-scale predictive 
simulations.  

In this work we analyze the architecture and performance of 
Roadrunner, a novel large-scale system currently being 
installed at Los Alamos National Laboratory (LANL). It is the 
first system to achieve a sustained performance in excess of 
1 Pflop/s on the LINPACK benchmark, achieving 1.026 
Pflops/s in May 2008. Roadrunner is a heterogeneous system 
containing an equal number of conventional, general-purpose 
microprocessors and special-purpose accelerators. The system 
has a peak speed of 1.38 Pflops/s (double precision; 
2.91 Pflop/s single precision). Each node in the system, a 
triblade, consists of three blades. One blade contains two dual-
core AMD Opteron processors, and the other two blades each 
contain two PowerXCell 8i processors (previously referred to 
as the Cell extended Double-Precision, Cell-eDP), the latest 

implementation of the IBM Cell Broadband Engine 
architecture. A total of 3,060 triblades are interconnected using 
InfiniBand to form the complete Roadrunner system. 

The combination of flexible microprocessors with high-
performing accelerator processors results in an extremely 
powerful system. Within a triblade each Opteron core is 
associated with a single PowerXCell 8i processor containing 
eight Synergistic Processing Elements (SPEs) and one Power 
Processor Element (PPE). Roadrunner exposes a rich 
computational environment given its heterogeneity. It can be 
utilized in one of three main processing paradigms depending 
on the suitability of each application. An application can run 
unmodified using only the Opteron processors without 
acceleration by the PowerXCell 8i processors. Or the 
application can use both processor types, accelerating key 
performance hotspots of the code on the PowerXCell 8i 
without porting all of the code.  Or the application can run on 
the PowerXCell 8i processors for all computational tasks and 
employ the Opterons only as support for internode 
communication, I/O, and visualization. 

To illustrate the architecture and performance of this new 
hybrid system, we describe the porting of the well-known MPI-
based scientific application Sweep3D, a kernel application that 
implements the main processing involved in deterministic 
particle transport computations.  We show how this application 
performs on pre-production Roadrunner hardware at full scale, 
focusing on measurements obtained on the new PowerXCell 8i 
processor, and use validated performance models to determine 
how well it will perform on Roadrunner when given a mature 
software stack. The performance, due in particular to the early 
software configuration, is likely to improve substantially before 
production use at LANL. 

The rest of this paper is organized as follows. In Section II 
we describe the Roadrunner architecture including its compute 
node and interconnection network. In Section III we provide an 
overview of how Roadrunner can and is being utilized from an 
application point of view. In Section IV we analyze the low-
level performance characteristics including the PowerXCell 8i 
processor and the performance of communications both within 
and between compute nodes. Section V details the 
implementation of the Sweep3D application on Roadrunner. 
The performance of Sweep3D is described in Section VI, and 
finally we draw some conclusions in Section VII. 



 

 

II. THE ARCHITECTURE OF ROADRUNNER  
The design of Roadrunner represents a careful balance 

between the availability of existing components and the need 
for technological advancement. The goals of the design were to 
provide high computational performance within acceptable cost 
and power budgets. While employing heterogeneous 
accelerators, Roadrunner needs to support three main 
processing paradigms: using unmodified code in a conventional 
cluster environment, accelerating key performance hotspots of 
the code, or running all of a code’s computational elements on 
accelerators. 

The recent introduction of the Cell Broadband Engine (Cell 
BE) [2,3,4,5], as designed for use in the Sony Playstation 3, 
offered a significant advance in computational power over 
general-purpose CPUs. A single Cell BE has a peak 
performance of 217.6 Gflops/s from its nine processor-cores. 
However, this speed is limited to single-precision (SP) 
operations and drops to 21.0 Gflops/s for double-precision 
(DP) required for scientific simulations. A further limitation is 
the use of a low-performance PowerPC processor core, which 
typically achieves a quarter of the performance of a typical 
AMD Opteron core.  Finally, the memory controller supports 
only Rambus XDR memory, limiting memory capacity to 2GB. 

To overcome these limitations, IBM implemented a new 
Cell processor, the PowerXCell 8i, for use in Roadrunner. The 
PowerXCell 8i has a peak performance of 108.8 Gflops/s on 
double-precision operations, and supports DDR2 memory at 
800MHz, allowing up to 32GB memory. The remaining 
shortcoming, the low-performance PowerPC processor core, is 
overcome by the incorporation of dual-core AMD Opteron 
2210 HE processors with one Opteron core for each 
PowerXCell 8i processor. In effect this provides an accelerator 
to each Opteron core. 

Approximately 95% of the peak performance of 
Roadrunner results from the PowerXCell 8i processors. In 
addition, the high processing efficiency that is possible for 
many applications gives rise to high achievable performance. 
In May 2008, Roadrunner was the first system to achieve over 
1 Pflop/s sustained performance on LINPACK (see 
www.top500.org). 

The PowerXCell 8i processors have low power 
consumption, making Roadrunner one of the most energy 
efficient supercomputers. This is documented by its placement 
on the top “Green” supercomputers list in June 2008 at position 
3 (see www.green500.org), achieving 437 Mflops/W on 
LINPACK. The two systems above Roadrunner on this list are 
small-scale PowerXCell 8i systems, achieving 488 Mflops/W, 
that do not incorporate the less power-efficient Opterons. 

We detail the architectural details of Roadrunner, bottom-
up, starting with a description of its compute node. 

A. The Roadrunner Compute Node 
A Roadrunner compute node is built using a unique triblade 

configuration. One blade, an IBM LS21, contains two dual-
core Opteron processors, and the remaining two blades, IBM 
QS22s, each contain two PowerXCell 8i processors. An 
expansion card, taking the space of a fourth blade, serves to 

interconnect the three compute blades. Each Opteron core and 
PowerXCell 8i within the triblade has 4 GB of DDR2 memory. 
The Opteron processors are clocked at 1.8 GHz, with each core 
able to issue two DP (double precision) floating-point 
operations per cycle, resulting in a peak of 14.4 Gflop/s per 
LS21 blade. Each core has a 64 KB L1 data cache, a 64 KB L1 
instruction cache, and a 2 MB L2 cache. The PowerXCell 8i 
processors are clocked at 3.2 GHz, and contain one Power 
Processing Element (PPE), and eight Synergistic Processing 
Elements (SPEs). The PPE has a traditional cache-based 
memory hierarchy consisting of a 32 KB L1 data cache, a 
32KB L1 instruction cache, and a 512 KB L2 cache. It can 
issue two DP floating-point operations per cycle. Each SPE 
contains a SIMD processing unit that can issue a total of 4 DP 
floating-point or 8 SP floating-point operations per cycle. Thus 
the peak performance per PowerXCell 8i is 108.8 DP Gflops/s 
of which 102.4 Gflop/s are from the eight SPEs. A key 
characteristic of the SPE is that it can directly address only 256 
KB of memory; this high-speed memory, known as local store, 
takes the place of a conventional cache architecture.  Main 
memory, shared with the PPE, can be accessed only via explicit 
direct memory access (DMA) transfers to or from local store. 
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Figure 1.  The structure of a Roadrunner compute node (triblade). 

The PowerXCell 8i is a particular implementation of the 
IBM Cell Broadband Engine Architecture (CBEA). Relative to 



 

 

the Cell BE that is utilized in the Sony PlayStation 3 game 
console, which has been extensively analyzed for scientific 
computation [6,7],  the PowerXCell 8i has seven times the peak 
DP floating-point performance of the Cell BE. A performance 
comparison of these two processors is presented in Section IV. 

Within the triblade, each of the PowerXCell 8i blades is 
connected to the Opteron blade via two PCIe x8 connections. 
The structure of this design is shown in Fig. 1. Each 
PowerXCell 8i blade has a direct connection to an Opteron 
processor. Indeed, as we describe later, each PowerXCell 8i 
processor is associated with a specific Opteron core such that 
each Opteron core communicates directly with one 
PowerXCell 8i processor in accelerated operation mode. The 
PCIe buses from the Cell blades are converted to 
HyperTransport for connection to the Opteron processors using 
two Broadcom HT2100 I/O controllers. The HT2100 has a 
single HyperTransport x16 port and three PCIe x8 ports. The 
third port on one of the HT2100 connects a Mellanox 4x DDR 
InfiniBand host channel adapter (HCA). The peak bandwidth 
between each PowerXCell 8i processor and its associated 
Opteron core is 2GB/s in each direction. 

B. The Roadrunner Compute Unit 
Each Roadrunner Compute Unit (CU) contains 180 

compute nodes (triblades), 12 I/O nodes connected to a 
Panasas parallel file system (PFS), and an additional service 
node. Each CU contains a single Voltaire ISR 9288 4x DDR 
288-port InfiniBand switch providing a peak bandwidth of 
2GB/s per direction, per port. The switch contains a total of 36 
24-port crossbars. The switch within each CU has the 
crossbars arranged in a two-level tree with 24 crossbars in a 
lower level, and 12 crossbars in the upper level. 22 of the 
lower level crossbars have 8 compute nodes attached, one 
crossbar has 4 compute nodes and 4 I/O nodes, and the last 
crossbar has 8 I/O nodes attached. In this way all nodes within 
a CU are interconnected in a full fat tree, utilizing 192 of the 
288 available ports, yielding a stand-alone cluster with up to 
96 up-links available to interconnect multiple CUs, as shown 
in the lower part of Fig. 2. 

C. The Roadrunner System 
The Roadrunner system consists of 17 CUs, for a total of 

3,060 compute nodes. Eight Voltaire ISR 9288 switches are 
used to interconnect all 17 CUs in a 2:1 reduced fat tree, as 
shown in the upper part of Fig. 2. Note that each CU has 12 
connections to each of the inter-CU switches. 

The inter-CU switches are arranged as three levels of 12 
crossbars. Each crossbar on the first level interconnects the first 
12 CUs, and the last level interconnects the last 5 CUs, with the 
middle level allowing for communication between the two sets 
of CUs. The overall design allows for up to 24 CUs. 

The interconnection topology reduces the average number 
of crossbar hops required between any nodes compared to a 
conventional fat-tree topology. A node is one hop away from 
the other seven on the same crossbar, three hops away from 
other nodes within the same CU, at most five hops away from 
any node on same side of the inter-CU switch, and at most 
seven hops away from nodes in CUs on the other side of the 

inter-CU switch. Each switch-hop imposes approximately 
220ns latency. A summary of the hop counts traversed for 
inter-node communications is given in Table I. 

TABLE I.  SUMMARY OF THE DISTANCES BETWEEN NODE-0 (CU-1) AND 
ALL OTHER NODES (IN CROSSBAR HOPS) IN ROADRUNNER 

Destination node No. of destinations Hop count 
Self 1 0 
Within same crossbar 7 1 
Within same CU 172 3 
In CUs 2-12, same crossbar 88 3 
In CUs 2-12, different crossbar 1892 5 
In CUs 13-17, same crossbar 40 5 
In CUs 13-17, different crossbar 860 7 
Total 3060 5.38 (average) 
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Figure 2.  An overview of the roadrunner system showing the interconnection 
of 17CUs, and expanded views of: a single CU Infiniband switch; an inter-CU 
Infiniband switch; a single CU Infiniband crossbar with 8 nodes attached, and 

a single inter-CU crossbar. 



 

 

The physical layout of Roadrunner consists of 16 compute 
racks per CU and an additional 4 racks for the inter-CU 
switches. Each rack holds either 12 triblades (4 triblades per 
BladeCenter chassis), two Voltaire switches, or a combination 
of both. 

D. Roadrunner System Characteristics 
A summary of the characteristics of Roadrunner is listed in 

Table II for its compute node, CU, and the overall system. The 
overall system peak performance is taken to be the sum of the 
peak performance of all Cell processors (PPE and SPE) and all 
Opteron processors contained within the compute nodes. The 
peak performance for both DP and SP floating-point operations 
is listed. A breakdown of the flops/s (DP) and the memory 
capacity of a single node are shown in Fig. 3. This clearly 
illustrates that the majority of the floating point performance 
derives from the SPEs on the PowerXCell 8i, and that the main 
memory capacity is equally split between the Opteron blade 
and the PowerXCell 8i blades. It is also interesting to note that 
the on-chip memory is similar between the four PowerXCell 8i 
processors and the four Opteron cores.  

TABLE II.  PERFORMANCE CHARACTERISTICS OF ROADRUNNER 

System   
CU count 17  
Node count 3,060  
Peak Performance (DP) 
                               (SP) 

1.38 Pflops/s 
2.91 Pflops/s 

 

   
Connected Unit (CU)   

Node count 180  
Peak performance / CU (DP) 
                                       (SP) 

80.9 Tflops 
171.1 Tflops 

 

   
Compute Node (triblade) 1x Opteron blade 2x Cell blades 

Processor count 2 4 
Processor-core count 4 4 PPEs, 32 SPEs 
Clock Speed 1.8 GHz 3.2 GHz 
Peak-performance/node (DP) 
                                       (SP) 

14.4 Gflops/s 
28.8 Gflops.s 

435.2 Gflops/s 
921.6 Gflops/s 

Memory per processor 4 GB  
(667MHz DDR2) 

4 GB  
(800MHz DDR2) 

 

Opterons
(14.4GF/s)

PPUs
(25.6GF/s)

SPEs (409.6 GF/s) Cell off-chip (16GB)

Opteron off-chip (16GB)

Cell on-chip
(10.25MB) 

Opteron on-chip
(8.5MB)

 
 (a) Peak processing rate (DP)  (b) Memory capacity 

Figure 3.  Processing and memory capacities of a Roadrunner node 

III. ROADRUNNER MODES OF USE 
Roadrunner was designed to support a spectrum of usage 

models. Existing codes can immediately take advantage of 
Roadrunner's conventional CPUs and network, ignoring the 
accelerators and treating the system as an ordinary cluster. 
(Without accelerators, Roadrunner would appear at 

approximately position 50 on the June 2008 Top 500 list, 
http://www.top500.org/list/2008/06/100.) Users can then 
identify performance-critical sections of code and modify those 
sections to run on the Cell blades. The SPaSM molecular-
dynamics code is an example of an early Roadrunner 
application that followed that approach [8]. In some cases, such 
as the VPIC particle-in-cell code [9], all computation is 
performed on the Cell blades; the Opterons are used almost 
exclusively to relay messages across nodes on behalf of the 
Cells. Finally, IBM's Roadrunner version of the LINPACK 
benchmark [10] not only uses both the Opterons and the Cells 
for computation but uses both at the same time—in contrast to 
the simpler, RPC-style offload of performance-critical 
functions to the accelerators.  

Because Roadrunner—and Roadrunner's form of hybrid 
computing—is still in its infancy, there are virtually no high-
level languages or application programming interfaces (APIs) 
that support it. (IBM's ALF library [11] does support hybrid 
execution within a node but not across nodes.) Consequently, 
all of the initial applications that have targeted hybrid 
execution on Roadrunner utilize low-level communication 
mechanisms: MFC I/O [12] for intra-socket communication 
among SPEs (over the Element Interconnect Bus) and between 
the SPEs and the PPE, DaCS [13] for communication within a 
node between a PPE and an Opteron, and MPI [14] for 
internode communication.  

An implication of Roadrunner's deep communication 
hierarchy—Element Interconnect Bus (EIB), PCI Express, 
HyperTransport, InfiniBand—is that the performance of a 
hybrid application is critically dependent upon the application's 
ability to exploit spatial and temporal locality. That is, a high-
performance Roadrunner program should be able to do most of 
its work on the SPEs and directly from local store, occasionally 
transferring data between local store and the Cell blade's 
memory, even less frequently transferring data between Cell 
memory and Opteron memory, and only rarely transferring data 
over the network.  

In porting codes to Roadrunner, two hybrid programming 
models have been explored.  We call the first approach the 
accelerator model. In the accelerator model, the basic structure 
of the application is no different from that running on a 
conventional architecture: most of the work is performed 
locally, and communication is used primarily for boundary 
exchanges or other relatively infrequent operations. On 
Roadrunner, the local work is pushed down to the Cell, and the 
SPE programs run—for long stretches of time—out of Cell 
memory. We call the second Roadrunner programming 
approach the SPE-centric model. The SPE-centric model is 
essentially the inverse of the accelerator model: instead of each 
Opteron having a unique MPI rank and pushing compute-
intensive work down to the SPEs, each SPE has a unique MPI 
rank and pushes non-compute-intensive work (including 
communication over the InfiniBand network) up to an Opteron. 
An advantage of the SPE-centric model is that it facilitates 
intra-Cell SPE-to-SPE communication over the high-bandwidth 
EIB links. A disadvantage is that achieving good performance 
still requires that attention be paid to intranode versus internode 
communication even though the model provides the illusion of 
a flat communication space. As in the accelerator model, the 



 

 

bandwidth to Cell memory is the primary performance limiter. 
Section V presents a case study of a Roadrunner application 
built to the SPE-centric model. 

IV. LOW-LEVEL PERFORMANCE MEASUREMENTS  
In this section we look at the measured performance 

characteristics of Roadrunner.  We examine two  subsystems: 
memory and communication. Also we compare the 
performance of the PowerXCell 8i and the original Cell BE. 

A. IBM PowerXCell 8i processor 
The PowerXCell 8i processor is designed to improve some 

capabilities of the previous Cell processor (Cell BE), namely 
double-precision floating point performance and memory 
capacity in the blades. To increase the memory capacity, the 
memory controller in the Cell processor was modified to 
support DDR2 memory. This change enables the 
PowerXCell 8i to support up to 32GB of memory in a blade.  
In the previous Cell BE, only Rambus XDR memories were 
supported, limiting the memory capacity to 2GB per blade. In 
addition, with DDR2 800MHz memories, the performance is 
quite similar to that of the previous XDR memories, providing 
25.6GB/s memory bandwidth to each Cell. 

Due to the overarching goal of reducing complexity in the 
first Cell BE processor, double-precision operations were not 
fully pipelined, yielding a poor performance compared with 
single precision operations. Specifically, at a clock rate of 3.2 
GHz the aggregate SPE peak performance on the Cell BE is 
204.8 Gflops/s SP but only 14.6 Gflops/s DP. The redesigned 
floating point unit in the PowerXCell 8i processor achieves a 
peak performance of 102.4 Gflops/s DP.  

To provide detailed performance analysis of the new double 
precision unit, we developed several microbenchmarks that 
measure three characteristics of all instruction types: (i) latency 
– from entering to exiting the instruction pipeline, (ii) local stall 
– the minimum number of cycles that must elapse between two 
issues to the same execution unit, and (iii) global stall – the 
number of cycles the processor stalls before any more 
instructions can be issued. The microbenchmarks are coded in 
assembly and thus were not subject to compiler optimizations.  

The latencies (in cycles) for each instruction group are 
shown in Fig. 4. The only difference in performance between 
the Cell BE and the PowerXCell 8i is observed on the FPD 
(Floating-Point Double) instruction group. The latency of FPD 
instructions is decreased from 13 cycles on the Cell BE to 9 
cycles on the PowerXCell 8i.  

The repetition distance, the number of cycles between 
consecutive uses (i.e., the sum of local and global stalls for 
each instruction group) is shown in Fig. 5. Note that a value of 
one corresponds to execution units that are fully pipelined. The 
only execution unit not fully pipelined in the Cell BE was the 
FPD unit, which in the new PowerXCell 8i processor is fully 
pipelined. This modification gives the SPEs in the PowerXCell 
8i the expected peak performance of 102.4 Gflops/s at 3.2GHz. 
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Figure 4.  Latency of each execution group 
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Figure 5.  Repetition distance of each execution group  

The PowerXCell 8i’s impact on several scientific 
applications of interest to LANL (VPIC, SPaSM, and Milagro) 
has recently been evaluated [15].  The PowerXCell 8i increases 
the performance of both SPaSM and Milagro by a factor of 
1.5x. VPIC doesn’t show significant improvements on this new 
processor as its calculations use single precision floating-point 
operations. As we show in Section VI a further application, 
Sweep3D, achieves a factor of almost 2x on the PowerXCell 
8i. 

B. Memory subsystem performance  
Due to the complex memory hierarchy and heterogeneity of 

Roadrunner, exploiting locality is very important to achieving 
good performance. Knowledge of the memory performance at 



 

 

each level gives insight into optimizations for this system. 
Streams [16] is used to quantify the performance of each of 
Roadrunner’s three processors’ memory systems: the SPE’s 
local store and access to main memory, the PPE’s access to 
main memory, and the Opterons conventional memory system. 
Each SPE dispatches one 128-bit load with a load latency of 6 
cycles [3]; pipelined, this gives a maximum bandwidth of 51.2 
GB/s. The maximum bandwidth for both the SPE and the PPE 
to main memory is 25.6 GB/s. As shown in Fig. 1, access is 
provided by the memory controller interface via the EIB. The 
eight SPEs and the PPE share access to the memory controller 
through the EIB which runs at 96 bytes/cycle. The Opteron has 
a maximum bandwidth of 10.7 GB/s per socket to main 
memory, again as shown in Fig. 1.  Streams results are shown 
in Table III. The results reported are from the Streams TRIAD, 
and are for a single SPE or by socket on the Opteron and the 
PPE. For the SPE we report results from accessing the local 
store as this is the only directly addressable memory.  The 
measured results show that the PPE is a bottleneck and is best 
used for control functions such as setting up memory regions 
for the SPEs to use. The latency to memory was measured 
using memtime, a microbenchmark designed to access one 
word per cache-line. Each word that is read is used to 
determine the address of the next word. By altering the total 
size of the data, the latency to each level of the memory 
hierarchy can be obtained. The measured latency to main 
memory is also listed in Table III. 

TABLE III.  MEASURED MEMORY PERFORMANCE OF ROADRUNNER 
PROCESSORS 

 Stream Triad 
(GB/s) 

Latency (memtime) 
(ns) 

Opteron 5.41 30.5 
PowerXCell 8i (PPE) 0.89 23.4 
PowerXCell 8i (SPE) 29.28  9.4 

C. Communication subsystem performance  
An important performance aspect of the triblade and overall 

system design is the achievable communication performance. 
Here we analyze the communication performance within the 
triblade (intranode) and of the entire system (internode). On a 
Roadrunner triblade, only the Opteron blade is connected to the 
InfiniBand network. Cell blades can only communicate with 
each other and with other triblades indirectly by transferring 
data over he PCIe bus to an Opteron and having the Opteron 
forward the data over InfiniBand (then back over PCIe to a 
target Cell). We use the DaCS communication library [17] for 
Cell-Opteron and Opteron-Cell communication and MPI 
(specifically, Open MPI [18]) for communication between 
Opterons in different triblades.  

A set of three communication ping-pong tests were 
developed to determine the achievable latency and bandwidth 
of each component of a Cell-to-Cell data transfer. One test 
measures the DaCS/PCIe latency between a Cell and an 
Opteron, one test measures the MPI/InfiniBand latency 
between Opterons in different triblades, and one test measures 
the latency of a complete Cell-Opteron-Opteron-Cell message 
path. Computing the difference among these latencies shows 
the breakdown of the latency of a zero-byte message as it 
travels from a Cell to its corresponding Opteron, over the 

network to another Opteron, and back down to a Cell. Fig. 6 
shows that the major communication cost resides in the 
communication between the Cell and the Opteron; the current 
implementation of DaCS and the corresponding PCIe driver 
has a higher latency than that of Infiniband. The 
communication between the Opterons is comparatively fast, 
probably due to the relative maturity of the Open MPI and 
InfiniBand software stacks. Overall, the latency of a message 
between a Cell and another Cell located in a different node is 
8.78µs as measured with the current software.  

 

Opteron to Cell
(via DaCS over PCIe)
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Opteron (via MPI
over InfiniBand)
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Figure 6.   Breakdown of the latency of a zero-byte message as it travels from 
a Cell to another Cell located in a different node. 

The unidirectional and bidirectional performance for Cell-
to-Cell communication is shown in Fig. 7 for both intranode 
and internode communication. The bidirectional bandwidth is 
taken to be the sum of bandwidths in both directions and is 
compared to twice the unidirectional bandwidth. All curves in 
Fig. 7 depict the worst-performing pair when all Cell-Opteron 
pairs are in use. In the intranode (PPE-Opteron) case, the 
bidirectional bandwidth is 64% of the double-unidirectional 
bandwidth (1,295 MB/s vs. 2,017 MB/s). In the internode 
(PPE-Opteron-Opteron-PPE) case, the bidirectional bandwidth 
is 70% of the double-unidirectional bandwidth (375 MB/s vs. 
536 MB/s). 

The unidirectional bandwidth between the Opteron cores in 
two nodes is shown in Fig. 8. The unidirectional bandwidth 
varies depending on the cores that are actually communicating, 
due to proximity of the Infiniband HCA being closer to one 
pair of Opteron cores as described in Section II. Significantly 
better bandwidth is obtained when cores 1 and 3 communicate 
(1,478 MB/s) than when cores 0 and 2 communicate (1,087 
MB/s). Cores 1 and 3 (and their memory) are closer to the 
HCA than cores 0 and 2.   
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Figure 7.  Intra- and internode bandwidth (PPE to PPE) 
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Figure 8.  Internode unidirectional bandwidth (Opteron to Opteron) 

A comparison between the current DaCS PCIe performance 
to that observed on the Infiniband is shown in Fig. 9. This is an 
interesting comparison because both communication transfers 
are over an 8x PCIe bus. In fact, the test is slightly biased in 
favor of DaCS because the MPI-over-InfiniBand ping-pong 
data represents network crossing in addition to two PCIe 
crossings—one on the sending node and one on the receiving 
node. Comparing the DaCS performance to the InfiniBand 
performance on the left-hand y-axis reveals that the InfiniBand 
achieves significantly more bandwidth than current DaCS. The 
ratio of the two curves is plotted using the right-hand y-axis. 
Although the ratio approaches 1 for large message sizes, at 
smaller messages in the range 0 to 20KB, DaCS achieves less 
than half the bandwidth of InfiniBand. This performance 
should improve as the DaCS software matures. 

0

100

200

300

400

500

600

700

800

900

1000

1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6
Message Size (B)

Ba
nd

w
di

th
 (M

B/
s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

R
el

at
iv

e 
Pe

rf
or

m
an

ce
 (i

nt
er

 v
s.

 in
tr

a)

Intra-node (Cell -> Opteron)

Inter-node (Opteron -> Opteron)

Relative (inter vs intra)

 

Figure 9.  InfiniBand vs. DaCS PCIe performance 
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Figure 10.  Zero-byte latency from MPI rank 0 to other nodes  

Fig. 10 shows the latency from MPI rank 0 to each of the 
other 3059 nodes for a zero-byte message. Rank 0 
communicates to each of the other nodes in sequence with no 
network contention. The switch hierarchy as described in 
Section II-B is observed from the message latency. The first 
seven neighbor nodes are connected to the same crossbar as 
node zero and observe the minimum latency of 2.5µs.  The 
performance plateau around 3µs reflects the latency to the other 
nodes in the same CU. The next network level increases the 
latency to approximately 3.5µs to the 12 CUs that are 5 hops 
away.  Here we can observe periodic lower latencies, every 90 
nodes, that are due to the unique wiring between CUs as 
described in Section II-B. The final plateau shows the latency 
of the extra switch traversals (7 hops) to reach the last 5 CUs, 
here we see latency of just under 4µs.  A similar test with a 
1MB message from MPI rank 0 to all other nodes reports an 
average bandwidth to the nodes of 980 MB/s under default 
OpenMPI parameters and 1.6GB/s when memory buffers are 
pinned.   

In the next section we take these results into consideration 
in porting and optimizing the Sweep3D application to the 
Roadrunner architecture. 

V. APPLICATION CASE STUDY: SWEEP3D  
The components of Roadrunner each exhibit high 

performance as observed by the analysis of the processing 
characteristics of the PowerXCell 8i and the intranode and 
internode communication characteristics. In the following two 
subsections we describe a particular application, Sweep3D, and 
its optimization for Roadrunner. Sweep3D is a challenging 
application on large-scale systems, in that it exhibits 
parallelism at different levels of granularity and because 
typically it does not achieve high single-core efficiency [19]. 
Its processing characteristics are representative of production 
applications of interest to LANL. 



 

 

A. Overview of Sweep3D 
Sweep3D solves a single-group time-independent discrete 

ordinates (SN) neutron-transport problem. The input data is 
specified in a 3-D Cartesian geometry with dimensions I, J, and 
K. Sweep3D is commonly run in weak-scaling mode with each 
process computing on the same number of grid-points 
regardless of the number of processes used. The global data 
grid of size (I×n)×(J×m)×K is decomposed in two dimensions 
across a logical 2-D processor array of size n×m. The unit of 
work in Sweep3D is a block of the K dimension which is split 
into K/MK blocks, where MK is the blocking factor. At most 
one block is computed on a processor in any one time-step. 
Blocking is used to achieve high parallel efficiency rather than 
to maximize cache utilization [19]. 

The underlying algorithm in Sweep3D corresponds to a 
wavefront. The computation consists of a succession of 
wavefronts in which each processor performs a computation on 
the data it owns, updates its block’s boundaries with data from 
its upstream neighbors, and sends updated boundaries to its 
downstream neighbors. The algorithm initiates wavefronts in 
each one of the corners of the eight octants of the 3-D problem 
space. A subgrid is computed for a number of angular values 
once its upstream boundary information is available, producing 
boundaries that are passed downstream. Communication using 
MPI is used to transfer boundary results. The progression of the 
sweep calculation in 1-D, 2-D, and 3-D are shown in Fig. 11 
for four steps. The inflows to, and outflows from, a single 
element are also shown for a particular wavefront direction. 
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Inflow
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Figure 11.  Wavefront propagation in Sweep3D. 

B. Implementation of Sweep3D on the Cell 
Sweep3D was one of the first scientific applications ported 

to the Cell architecture [20], wherein the investigators reported 
good performance using a master/worker paradigm. In this 
early implementation the unit of work was a single “pencil” of 
work in the I dimension.  However, the approach required a 
significant number of DMAs to transfer data volumes 
repeatedly to SPE workers. Consequently, the performance was 

bounded by the available memory bandwidth, because the 
volume was large relative to the local store of the SPEs. 

Rather than using a master/worker arrangement, our 
implementation retains the structure of the original MPI version 
of Sweep3D. That is, each SPE has its own MPI rank and 
processes a static allocation of an I×J×K sub-grid.  This SPE-
centric approach allows balancing and overlapping of the 
computation of a block in the K dimension with the 
communication of the surfaces, thereby maximizing the ratio of 
computation to DMA activity. In other words, our version 
communicates surfaces, while the previous algorithm required 
communicating entire volumes. Furthermore, much of the 
communication in our implementation occurs on the high-
bandwidth Element Interconnect Bus (EIB) that interconnects 
the SPEs. The PPEs in this programming model are used only 
to forward messages and to handle some of the mundane 
operations that are not available on the SPE, such as main-
memory allocation. To implement Sweep3D in this way the 
Cell Messaging Layer was used (see Section V-C).  

Other optimizations were implemented to take advantage of 
dual issue and the SIMD instructions on the SPEs.  The number 
of angles within an octant was fixed at six and the inner loop 
nest was re-ordered so that the angle loop was innermost. This 
allowed the processing of two of the six angles at a time using 
SIMD instructions. This inner loop was then unrolled three 
times. In this way all six angles are efficiently computed in a 
single iteration. The SPE is a dual-issue processor but only if 
the correct instruction mix is available for the odd and even 
pipelines [21,22]. Taking this into account, instructions were 
interleaved for these two pipes by rearranging non-dependent 
code and unrolling and adding temporary variables so that 
more instructions were available to fill the two pipes. Also, the 
order of the instructions was carefully chosen to hide as much 
of their latencies as possible. Another issue to be addressed in 
programming the Cell is the small size of the local store. The 
size of the computational work block is I×J×(K/MK) in 
Sweep3D and the blocking parameter, MK, must be carefully 
chosen so that the block fits into the local store. Given that the 
subgrid resides in the main memory, fetching and storing each 
block requires the SPEs to DMA to/from the main memory. 

C. Sweep3D communication support 
Communication in Sweep3D is handled by the Cell 

Messaging Layer1 (CML) [23], a message-passing library for 
the Cell that implements a subset of MPI [14]. The key 
abstraction provided by CML is that the cluster appears to be a 
sea of interconnected SPEs. Each SPE in the entire cluster has a 
unique MPI rank, and any SPE can communicate with any 
other SPE regardless of whether the SPEs are in the same 
socket, the same blade, the same node, or different nodes. CML 
was in fact designed in concert with our Sweep3D 
implementation and supports all of the MPI functions needed 
by Sweep3D including point-to-point messaging, barriers, 
broadcasts, and data reductions. The advantage of CML's SPE-
centric model is that MPI codes can be ported quickly to the 
Cell, then incrementally modified to stage data in and out of 
main memory and to exploit the SPE's vector units. 

                                                           
1 http://cellmessaging.sourceforge.net/ 



 

 

In CML, the PPE and Opteron are subservient to the SPE 
and are used primarily for shuttling messages to SPEs in other 
blades. However, CML does provide a convenient remote 
procedure call (RPC) mechanism that enables a SPE to invoke 
a function on the PPE, and the PPE to invoke a function on the 
Opteron, and receive the result. Our Sweep3D implementation 
uses RPC functions to invoke malloc() on the PPE in order 
to allocate main-memory buffers that can be used for holding 
intermediate results. Roadrunner does not expose the parallel 
filesystem to the PPEs, so our Sweep3D invokes an RPC 
function on the Opteron to read and return the input file. 

The CML implementation is structured for high-speed 
communication. Messages sent between SPEs in the same 
socket, or cache-coherent sockets within a blade (as in a stock 
QS21 blade [24,25], not the case in Roadrunner), can proceed 
entirely over the high-speed Element Interconnect Bus (EIB) 
with no PPE involvement. Within a socket, CML peak 
performance has been measured as 0.272µs latency for a zero-
byte message and 22.4GB/s for a large (128KB) message. 
Communication between SPEs in different sockets involves 
DMAs to the PPE, which transfers the data to a target PPE 
using MPI; the target SPE then DMAs the message from its 
PPE. On Roadrunner, since PPEs are not directly connected, 
each PPE forwards all SPE MPI requests over the PCIe bus to 
its corresponding Opteron using DaCS, and the Opteron 
performs the MPI operations on behalf of the PPE. 

VI. PERFORMANCE OF SWEEP3D  
The performance of Sweep3D was first measured on a 

single PowerXCell 8i processor. The input file specified a 
5×5×400 sub-grid size per SPE in weak-scaling mode with a 
blocking factor of 20 K-planes (MK=20) with the number of 
angles fixed at 6.  Fig. 12 shows the iteration time for a single 
SPE of the PowerXCell 8i and all 8 SPEs in a single processor.  
For comparison, the figure also shows the performance of the 
original version of Sweep3D running on dual-core and quad-
core AMD Opterons as well as a quad-core Intel Tigerton. It 
can be seen that the implementation of Sweep3D on a single 
SPE of the PowerXCell 8i achieves a runtime comparable to a 
single core of the Intel and AMD processors. The performance   
of the full socket (8 SPEs) is twice that of the quad-core 
processors and almost 5 times that of a dual-core Opteron.  

A performance comparison of the Sweep3D 
implementation described here to that previously reported by 
other researchers [20] is given in Table IV. The problem 
compared is the 50x50x50 subgrid, with MK blocking of 10, 
and the number of angles (MMI) set to be 6. The table shows 
that the performance is significantly higher for the 
implementation reported here and that the PowerXCell 8i’s 
improved double-precision floating-point capability can also 
substantially improve the performance delivered to 
applications. For Sweep3D the improvement is a factor of 1.9x. 

TABLE IV.  PERFORMANCE COMPARISON OF SWEEP3D 
IMPLEMENTATIONS FOR THE CELL. 

` previous Sweep3D our Sweep3D 
CBE 1.3 s 0.37 s 
PowerXCell 8i N/A 0.19 s 
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Figure 12.  Performance comparison of Sweep3D 

A. Performance at Scale  
In this section we examine the performance of Sweep3D at 

large-scale on the pre-production Roadrunner system. Using a 
subgrid size of 5x5x400 per SPE, the achieved performance 
from a non-accelerated code (Opteron only), and from the 
accelerated code that used the PowerXCell 8i processors is 
shown in Fig. 13. The time for one iteration is shown when 
using between 1 and 3,060 nodes of Roadrunner (the full 17CU 
system). It can be seen that the measured times on the 
PowerXCell 8i processors are substantially lower than that on 
the Opterons.  

The use of DaCS as the underlying transport mechanism for 
CML introduces some overheads in terms of increased latency 
and decreased bandwidth across the PCIe bus between the 
PowerXCell 8i and the Opteron. The peak PCIe performance 
was measured using a small microbenchmark showing that the 
achievable peak bandwidth is 1.6GB/s (unidirectional) and 
with a minimum latency of 2µs. This is substantially better than 
that seen for the achieved DaCS latency as shown in Fig. 6, and 
achieved unidirectional bandwidth shown in Fig. 7.  

Using a performance model of Sweep3D [19], which has 
been validated on most large-scale systems over the last 
decade, we have predicted what the best achievable 
performance should be. This is also shown in Fig. 13 utilizing 
the peak PCIe performance characteristics. The peak PCIe 
performance will not be realized in practice as overheads 
induced by flow control and multiple buffering when dealing 
with multiple communications will be required for transmission 
correctness. However, as shown in Fig. 13, the performance of 
the current implementation is close to the best achievable at 
small scale, and could be improved by almost a factor of two at 
large scale. We expect that some of this performance 
improvement will be realized before Roadrunner becomes a 
production machine in late 2008. 
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Figure 13.  Performance of accelerated and non-accelerated Sweep3D on 
Roadrunner. 

 

The relative performance between the accelerated, and non-
accelerated version of Sweep3D on Roadrunner is shown in 
Fig. 14. Both the current measured improvement and that 
modeled using the peak PCIe performance is shown in Fig. 14.  
It can be seen that currently almost a factor of two higher 
performance is achieved when using the accelerators in 
Roadrunner. The performance improvement may be as high as 
4x at large-scale if the peak PCIe performance were to be 
realized.  
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Figure 14.  Performance improvements of Sweep3D between the use of the 
PowerXCell 8i and the Opteron processors in Roadrunner. 

VII. CONCLUSIONS 
In this work we have introduced the architecture of a large-

scale hybrid system being deployed at LANL in 2008. 
Roadrunner contains both conventional micro-processors 
alongside IBM PowerXCell 8i accelerator processors. We have 
presented the basic system characteristics of Roadrunner and of 
the new PowerXCell 8i chip.  Performance characteristics of 
the PowerXCell 8i show a significant performance 
improvement over the earlier implementation of the Cell 
Broadband Engine (Cell BE) by a factor of 7x on double-
precision floating point operations. We also have illustrated the 
high communication performance that is available within a 
compute-node as well as between compute nodes. 

Though Roadrunner is the first system to achieve over a 
sustained petaflop on the LINPACK benchmark, the real 
benefit of the system results from achieved application 
performance. In this work we have shown that an optimized 
version of a demanding application, Sweep3D, achieves 
significant speedup on the PowerXCell 8i compared to current 
state of the art multi-core processors from AMD and Intel, as 
well as the older Cell BE processor. The implementation of 
Sweep3D is also compared to a previous implementation on the 
Cell BE, indicating a speedup of 3x. Finally performance 
results of Sweep3D at full scale of Roadrunner running on all 
3,060 compute nodes utilizing all 97,920 SPEs were presented. 
These results show a 2x speedup over the base system, which is 
running early versions of the communication software. We then 
show through the use of highly accurate performance modeling 
the expected performance gains of the full Roadrunner system 
once the software layers are optimized to more closely match 
the achievable hardware performance.  For small scale jobs the 
expected performance advantage is 10x, and for large-scale 
jobs the performance advantage is 5x. This clearly illustrates 
the performance potential of Roadrunner and advantage that a 
hybrid accelerator design can have in terms of performance. 
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