

Entering the Petaflop Era:
The Architecture and Performance of Roadrunner

Kevin J. Barker, Kei Davis, Adolfy Hoisie, Darren J. Kerbyson, Mike Lang, Scott Pakin, Jose C. Sancho
Performance and Architecture Lab (PAL)

Los Alamos National Laboratory
Los Alamos, USA

{kjbarker,kei,hoisie,djk,mlang,pakin,jcsancho}@lanl.gov

Abstract—Roadrunner is a 1.38 Pflop/s-peak (double
precision) hybrid-architecture supercomputer developed by
LANL and IBM. It contains 12,240 IBM PowerXCell 8i processors
and 12,240 AMD Opteron cores in 3,060 compute nodes.
Roadrunner is the first supercomputer to run Linpack at a
sustained speed in excess of 1 Pflop/s. In this paper we present a
detailed architectural description of Roadrunner and a detailed
performance analysis of the system. A case study of optimizing the
MPI-based application Sweep3D to exploit Roadrunner’s hybrid
architecture is also included. The performance of Sweep3D is
compared to that of the code on a previous implementation of the
Cell Broadband Engine architecture—the Cell BE—and on multi-
core processors. Using validated performance models combined
with Roadrunner-specific microbenchmarks we identify
performance issues in the early pre-delivery system and infer how
well the final Roadrunner configuration will perform once the
system software stack has matured.

Keywords—Petascale computing, heterogeneous, accelerators,
performance analysis, Roadrunner.

I. INTRODUCTION
Breaking the barrier of a petaflop has been a grand

challenge in high-performance computing for the last several
years. There are several projects aimed to deliver petaflop or
multi-petaflop performance in the near future, such as the
machines being developed in the DARPA High Productivity
Computing Systems program [1]. The quest for systems in the
petaflop regime and beyond is driven by important challenges
in science that could be addressed with large-scale predictive
simulations.

In this work we analyze the architecture and performance of
Roadrunner, a novel large-scale system currently being
installed at Los Alamos National Laboratory (LANL). It is the
first system to achieve a sustained performance in excess of
1 Pflop/s on the LINPACK benchmark, achieving 1.026
Pflops/s in May 2008. Roadrunner is a heterogeneous system
containing an equal number of conventional, general-purpose
microprocessors and special-purpose accelerators. The system
has a peak speed of 1.38 Pflops/s (double precision;
2.91 Pflop/s single precision). Each node in the system, a
triblade, consists of three blades. One blade contains two dual-
core AMD Opteron processors, and the other two blades each
contain two PowerXCell 8i processors (previously referred to
as the Cell extended Double-Precision, Cell-eDP), the latest

implementation of the IBM Cell Broadband Engine
architecture. A total of 3,060 triblades are interconnected using
InfiniBand to form the complete Roadrunner system.

The combination of flexible microprocessors with high-
performing accelerator processors results in an extremely
powerful system. Within a triblade each Opteron core is
associated with a single PowerXCell 8i processor containing
eight Synergistic Processing Elements (SPEs) and one Power
Processor Element (PPE). Roadrunner exposes a rich
computational environment given its heterogeneity. It can be
utilized in one of three main processing paradigms depending
on the suitability of each application. An application can run
unmodified using only the Opteron processors without
acceleration by the PowerXCell 8i processors. Or the
application can use both processor types, accelerating key
performance hotspots of the code on the PowerXCell 8i
without porting all of the code. Or the application can run on
the PowerXCell 8i processors for all computational tasks and
employ the Opterons only as support for internode
communication, I/O, and visualization.

To illustrate the architecture and performance of this new
hybrid system, we describe the porting of the well-known MPI-
based scientific application Sweep3D, a kernel application that
implements the main processing involved in deterministic
particle transport computations. We show how this application
performs on pre-production Roadrunner hardware at full scale,
focusing on measurements obtained on the new PowerXCell 8i
processor, and use validated performance models to determine
how well it will perform on Roadrunner when given a mature
software stack. The performance, due in particular to the early
software configuration, is likely to improve substantially before
production use at LANL.

The rest of this paper is organized as follows. In Section II
we describe the Roadrunner architecture including its compute
node and interconnection network. In Section III we provide an
overview of how Roadrunner can and is being utilized from an
application point of view. In Section IV we analyze the low-
level performance characteristics including the PowerXCell 8i
processor and the performance of communications both within
and between compute nodes. Section V details the
implementation of the Sweep3D application on Roadrunner.
The performance of Sweep3D is described in Section VI, and
finally we draw some conclusions in Section VII.

II. THE ARCHITECTURE OF ROADRUNNER
The design of Roadrunner represents a careful balance

between the availability of existing components and the need
for technological advancement. The goals of the design were to
provide high computational performance within acceptable cost
and power budgets. While employing heterogeneous
accelerators, Roadrunner needs to support three main
processing paradigms: using unmodified code in a conventional
cluster environment, accelerating key performance hotspots of
the code, or running all of a code’s computational elements on
accelerators.

The recent introduction of the Cell Broadband Engine (Cell
BE) [2,3,4,5], as designed for use in the Sony Playstation 3,
offered a significant advance in computational power over
general-purpose CPUs. A single Cell BE has a peak
performance of 217.6 Gflops/s from its nine processor-cores.
However, this speed is limited to single-precision (SP)
operations and drops to 21.0 Gflops/s for double-precision
(DP) required for scientific simulations. A further limitation is
the use of a low-performance PowerPC processor core, which
typically achieves a quarter of the performance of a typical
AMD Opteron core. Finally, the memory controller supports
only Rambus XDR memory, limiting memory capacity to 2GB.

To overcome these limitations, IBM implemented a new
Cell processor, the PowerXCell 8i, for use in Roadrunner. The
PowerXCell 8i has a peak performance of 108.8 Gflops/s on
double-precision operations, and supports DDR2 memory at
800MHz, allowing up to 32GB memory. The remaining
shortcoming, the low-performance PowerPC processor core, is
overcome by the incorporation of dual-core AMD Opteron
2210 HE processors with one Opteron core for each
PowerXCell 8i processor. In effect this provides an accelerator
to each Opteron core.

Approximately 95% of the peak performance of
Roadrunner results from the PowerXCell 8i processors. In
addition, the high processing efficiency that is possible for
many applications gives rise to high achievable performance.
In May 2008, Roadrunner was the first system to achieve over
1 Pflop/s sustained performance on LINPACK (see
www.top500.org).

The PowerXCell 8i processors have low power
consumption, making Roadrunner one of the most energy
efficient supercomputers. This is documented by its placement
on the top “Green” supercomputers list in June 2008 at position
3 (see www.green500.org), achieving 437 Mflops/W on
LINPACK. The two systems above Roadrunner on this list are
small-scale PowerXCell 8i systems, achieving 488 Mflops/W,
that do not incorporate the less power-efficient Opterons.

We detail the architectural details of Roadrunner, bottom-
up, starting with a description of its compute node.

A. The Roadrunner Compute Node
A Roadrunner compute node is built using a unique triblade

configuration. One blade, an IBM LS21, contains two dual-
core Opteron processors, and the remaining two blades, IBM
QS22s, each contain two PowerXCell 8i processors. An
expansion card, taking the space of a fourth blade, serves to

interconnect the three compute blades. Each Opteron core and
PowerXCell 8i within the triblade has 4 GB of DDR2 memory.
The Opteron processors are clocked at 1.8 GHz, with each core
able to issue two DP (double precision) floating-point
operations per cycle, resulting in a peak of 14.4 Gflop/s per
LS21 blade. Each core has a 64 KB L1 data cache, a 64 KB L1
instruction cache, and a 2 MB L2 cache. The PowerXCell 8i
processors are clocked at 3.2 GHz, and contain one Power
Processing Element (PPE), and eight Synergistic Processing
Elements (SPEs). The PPE has a traditional cache-based
memory hierarchy consisting of a 32 KB L1 data cache, a
32KB L1 instruction cache, and a 512 KB L2 cache. It can
issue two DP floating-point operations per cycle. Each SPE
contains a SIMD processing unit that can issue a total of 4 DP
floating-point or 8 SP floating-point operations per cycle. Thus
the peak performance per PowerXCell 8i is 108.8 DP Gflops/s
of which 102.4 Gflop/s are from the eight SPEs. A key
characteristic of the SPE is that it can directly address only 256
KB of memory; this high-speed memory, known as local store,
takes the place of a conventional cache architecture. Main
memory, shared with the PPE, can be accessed only via explicit
direct memory access (DMA) transfers to or from local store.

4x
 D

D
R

 In
fin

ib
an

d

QS22 Blade
PowerXCell 8i

HT x16
6.4GB/s

PCIe x8
2+2GB/s

PowerXcell 8i

SPEs (x8)
102.4Gf/s (DP)

PPU (x1)
6.4Gf/s (DP)

25.6GB/s

4GB

25.6GB/s

PowerXcell 8i

SPEs (x8)
102.4Gf/s (DP)

PPU (x1)
6.4Gf/s (DP)

25.6GB/s

4GB

PCIe x8
2+2GB/s

PCIe x8
2+2GB/s

PowerXcell 8i

SPEs (x8)
102.4Gf/s (DP)

PPU (x1)
6.4Gf/s (DP)

25.6GB/s

4GB

25.6GB/s

PowerXcell 8i

SPEs (x8)
102.4Gf/s (DP)

PPU (x1)
6.4Gf/s (DP)

25.6GB/s

4GB

PCIe x8
2+2GB/s

HT2100 HT2100 IB 4x
DDR

PCIe x8
2+2GB/s

AMD Opteron
Dual-core

7.2Gf/s (DP)
14.4Gf/s (SP)

10.7GB/s

4GB

AMD Opteron
Dual-core

7.2Gf/s (DP)
14.4Gf/s (SP)

10.7GB/s

4GB

HT x16
6.4GB/s

HT x16
6.4GB/s

LS21 Blade
(Opteron)

QS22 Blade
PowerXCell 8i

Figure 1. The structure of a Roadrunner compute node (triblade).

The PowerXCell 8i is a particular implementation of the
IBM Cell Broadband Engine Architecture (CBEA). Relative to

the Cell BE that is utilized in the Sony PlayStation 3 game
console, which has been extensively analyzed for scientific
computation [6,7], the PowerXCell 8i has seven times the peak
DP floating-point performance of the Cell BE. A performance
comparison of these two processors is presented in Section IV.

Within the triblade, each of the PowerXCell 8i blades is
connected to the Opteron blade via two PCIe x8 connections.
The structure of this design is shown in Fig. 1. Each
PowerXCell 8i blade has a direct connection to an Opteron
processor. Indeed, as we describe later, each PowerXCell 8i
processor is associated with a specific Opteron core such that
each Opteron core communicates directly with one
PowerXCell 8i processor in accelerated operation mode. The
PCIe buses from the Cell blades are converted to
HyperTransport for connection to the Opteron processors using
two Broadcom HT2100 I/O controllers. The HT2100 has a
single HyperTransport x16 port and three PCIe x8 ports. The
third port on one of the HT2100 connects a Mellanox 4x DDR
InfiniBand host channel adapter (HCA). The peak bandwidth
between each PowerXCell 8i processor and its associated
Opteron core is 2GB/s in each direction.

B. The Roadrunner Compute Unit
Each Roadrunner Compute Unit (CU) contains 180

compute nodes (triblades), 12 I/O nodes connected to a
Panasas parallel file system (PFS), and an additional service
node. Each CU contains a single Voltaire ISR 9288 4x DDR
288-port InfiniBand switch providing a peak bandwidth of
2GB/s per direction, per port. The switch contains a total of 36
24-port crossbars. The switch within each CU has the
crossbars arranged in a two-level tree with 24 crossbars in a
lower level, and 12 crossbars in the upper level. 22 of the
lower level crossbars have 8 compute nodes attached, one
crossbar has 4 compute nodes and 4 I/O nodes, and the last
crossbar has 8 I/O nodes attached. In this way all nodes within
a CU are interconnected in a full fat tree, utilizing 192 of the
288 available ports, yielding a stand-alone cluster with up to
96 up-links available to interconnect multiple CUs, as shown
in the lower part of Fig. 2.

C. The Roadrunner System
The Roadrunner system consists of 17 CUs, for a total of

3,060 compute nodes. Eight Voltaire ISR 9288 switches are
used to interconnect all 17 CUs in a 2:1 reduced fat tree, as
shown in the upper part of Fig. 2. Note that each CU has 12
connections to each of the inter-CU switches.

The inter-CU switches are arranged as three levels of 12
crossbars. Each crossbar on the first level interconnects the first
12 CUs, and the last level interconnects the last 5 CUs, with the
middle level allowing for communication between the two sets
of CUs. The overall design allows for up to 24 CUs.

The interconnection topology reduces the average number
of crossbar hops required between any nodes compared to a
conventional fat-tree topology. A node is one hop away from
the other seven on the same crossbar, three hops away from
other nodes within the same CU, at most five hops away from
any node on same side of the inter-CU switch, and at most
seven hops away from nodes in CUs on the other side of the

inter-CU switch. Each switch-hop imposes approximately
220ns latency. A summary of the hop counts traversed for
inter-node communications is given in Table I.

TABLE I. SUMMARY OF THE DISTANCES BETWEEN NODE-0 (CU-1) AND
ALL OTHER NODES (IN CROSSBAR HOPS) IN ROADRUNNER

Destination node No. of destinations Hop count
Self 1 0
Within same crossbar 7 1
Within same CU 172 3
In CUs 2-12, same crossbar 88 3
In CUs 2-12, different crossbar 1892 5
In CUs 13-17, same crossbar 40 5
In CUs 13-17, different crossbar 860 7
Total 3060 5.38 (average)

. . .
. . .

...
...

24
-p

or
t X

-b
ar

24
-p

or
t X

-b
ar

8
no

de
s

12
 in

tra
-C

U
ch

an
ne

ls

4
in

te
r-

C
U

 c
ha

nn
el

s

24
-p

or
t X

-b
ar

to
 fi

rs
t 1

2
C

U
s

to
 la

st

5
C

U
s

sp
ar

e

D
et

ai
l o

f o
ne

 C
U

D
et

ai
l o

f o
ne

 m
id

dl
e

In
fin

ib
an

d
sw

itc
h

Detail of one CU X-bar Detail of switch X-bar

180 180

180 180

180 180

180 180

180 180

180

180

180

180

180

180

180

180

180

180

180

180

180

180

. . .

. . .

CU13

CU14

CU15

CU16

CU17

CU1

CU2

CU3

CU4

CU5

CU6

CU7

CU8

CU9

CU10

CU11

CU12 12

12 12180 180

180 180

180 180

180 180

180 180

180

180

180

180

180

180

180

180

180

180

180

180

180

180

. . .

. . .

CU13

CU14

CU15

CU16

CU17

CU1

CU2

CU3

CU4

CU5

CU6

CU7

CU8

CU9

CU10

CU11

CU12 12

12 12

I/O

8
8

8
8

8
8

8
8

8
8

8
8

8
8

8
8

8
8

8
8

8
8

4 6
6 I/O

I/O

8
8

8
8

8
8

8
8

8
8

8
8

8
8

8
8

8
8

8
8

8
8

4 6
6 I/O

I/O

8
8

8
8

8
8

8
8

8
8

8
8

8
8

8
8

8
8

8
8

8
8

4 6
6

8
8

8
8

8
8

8
8

8
8

8
8

8
8

8
8

8
8

8
8

8
8

4 6
6 I/O

Figure 2. An overview of the roadrunner system showing the interconnection
of 17CUs, and expanded views of: a single CU Infiniband switch; an inter-CU
Infiniband switch; a single CU Infiniband crossbar with 8 nodes attached, and

a single inter-CU crossbar.

The physical layout of Roadrunner consists of 16 compute
racks per CU and an additional 4 racks for the inter-CU
switches. Each rack holds either 12 triblades (4 triblades per
BladeCenter chassis), two Voltaire switches, or a combination
of both.

D. Roadrunner System Characteristics
A summary of the characteristics of Roadrunner is listed in

Table II for its compute node, CU, and the overall system. The
overall system peak performance is taken to be the sum of the
peak performance of all Cell processors (PPE and SPE) and all
Opteron processors contained within the compute nodes. The
peak performance for both DP and SP floating-point operations
is listed. A breakdown of the flops/s (DP) and the memory
capacity of a single node are shown in Fig. 3. This clearly
illustrates that the majority of the floating point performance
derives from the SPEs on the PowerXCell 8i, and that the main
memory capacity is equally split between the Opteron blade
and the PowerXCell 8i blades. It is also interesting to note that
the on-chip memory is similar between the four PowerXCell 8i
processors and the four Opteron cores.

TABLE II. PERFORMANCE CHARACTERISTICS OF ROADRUNNER

System
CU count 17
Node count 3,060
Peak Performance (DP)
 (SP)

1.38 Pflops/s
2.91 Pflops/s

Connected Unit (CU)

Node count 180
Peak performance / CU (DP)
 (SP)

80.9 Tflops
171.1 Tflops

Compute Node (triblade) 1x Opteron blade 2x Cell blades

Processor count 2 4
Processor-core count 4 4 PPEs, 32 SPEs
Clock Speed 1.8 GHz 3.2 GHz
Peak-performance/node (DP)
 (SP)

14.4 Gflops/s
28.8 Gflops.s

435.2 Gflops/s
921.6 Gflops/s

Memory per processor 4 GB
(667MHz DDR2)

4 GB
(800MHz DDR2)

Opterons
(14.4GF/s)

PPUs
(25.6GF/s)

SPEs (409.6 GF/s) Cell off-chip (16GB)

Opteron off-chip (16GB)

Cell on-chip
(10.25MB)

Opteron on-chip
(8.5MB)

 (a) Peak processing rate (DP) (b) Memory capacity

Figure 3. Processing and memory capacities of a Roadrunner node

III. ROADRUNNER MODES OF USE
Roadrunner was designed to support a spectrum of usage

models. Existing codes can immediately take advantage of
Roadrunner's conventional CPUs and network, ignoring the
accelerators and treating the system as an ordinary cluster.
(Without accelerators, Roadrunner would appear at

approximately position 50 on the June 2008 Top 500 list,
http://www.top500.org/list/2008/06/100.) Users can then
identify performance-critical sections of code and modify those
sections to run on the Cell blades. The SPaSM molecular-
dynamics code is an example of an early Roadrunner
application that followed that approach [8]. In some cases, such
as the VPIC particle-in-cell code [9], all computation is
performed on the Cell blades; the Opterons are used almost
exclusively to relay messages across nodes on behalf of the
Cells. Finally, IBM's Roadrunner version of the LINPACK
benchmark [10] not only uses both the Opterons and the Cells
for computation but uses both at the same time—in contrast to
the simpler, RPC-style offload of performance-critical
functions to the accelerators.

Because Roadrunner—and Roadrunner's form of hybrid
computing—is still in its infancy, there are virtually no high-
level languages or application programming interfaces (APIs)
that support it. (IBM's ALF library [11] does support hybrid
execution within a node but not across nodes.) Consequently,
all of the initial applications that have targeted hybrid
execution on Roadrunner utilize low-level communication
mechanisms: MFC I/O [12] for intra-socket communication
among SPEs (over the Element Interconnect Bus) and between
the SPEs and the PPE, DaCS [13] for communication within a
node between a PPE and an Opteron, and MPI [14] for
internode communication.

An implication of Roadrunner's deep communication
hierarchy—Element Interconnect Bus (EIB), PCI Express,
HyperTransport, InfiniBand—is that the performance of a
hybrid application is critically dependent upon the application's
ability to exploit spatial and temporal locality. That is, a high-
performance Roadrunner program should be able to do most of
its work on the SPEs and directly from local store, occasionally
transferring data between local store and the Cell blade's
memory, even less frequently transferring data between Cell
memory and Opteron memory, and only rarely transferring data
over the network.

In porting codes to Roadrunner, two hybrid programming
models have been explored. We call the first approach the
accelerator model. In the accelerator model, the basic structure
of the application is no different from that running on a
conventional architecture: most of the work is performed
locally, and communication is used primarily for boundary
exchanges or other relatively infrequent operations. On
Roadrunner, the local work is pushed down to the Cell, and the
SPE programs run—for long stretches of time—out of Cell
memory. We call the second Roadrunner programming
approach the SPE-centric model. The SPE-centric model is
essentially the inverse of the accelerator model: instead of each
Opteron having a unique MPI rank and pushing compute-
intensive work down to the SPEs, each SPE has a unique MPI
rank and pushes non-compute-intensive work (including
communication over the InfiniBand network) up to an Opteron.
An advantage of the SPE-centric model is that it facilitates
intra-Cell SPE-to-SPE communication over the high-bandwidth
EIB links. A disadvantage is that achieving good performance
still requires that attention be paid to intranode versus internode
communication even though the model provides the illusion of
a flat communication space. As in the accelerator model, the

bandwidth to Cell memory is the primary performance limiter.
Section V presents a case study of a Roadrunner application
built to the SPE-centric model.

IV. LOW-LEVEL PERFORMANCE MEASUREMENTS
In this section we look at the measured performance

characteristics of Roadrunner. We examine two subsystems:
memory and communication. Also we compare the
performance of the PowerXCell 8i and the original Cell BE.

A. IBM PowerXCell 8i processor
The PowerXCell 8i processor is designed to improve some

capabilities of the previous Cell processor (Cell BE), namely
double-precision floating point performance and memory
capacity in the blades. To increase the memory capacity, the
memory controller in the Cell processor was modified to
support DDR2 memory. This change enables the
PowerXCell 8i to support up to 32GB of memory in a blade.
In the previous Cell BE, only Rambus XDR memories were
supported, limiting the memory capacity to 2GB per blade. In
addition, with DDR2 800MHz memories, the performance is
quite similar to that of the previous XDR memories, providing
25.6GB/s memory bandwidth to each Cell.

Due to the overarching goal of reducing complexity in the
first Cell BE processor, double-precision operations were not
fully pipelined, yielding a poor performance compared with
single precision operations. Specifically, at a clock rate of 3.2
GHz the aggregate SPE peak performance on the Cell BE is
204.8 Gflops/s SP but only 14.6 Gflops/s DP. The redesigned
floating point unit in the PowerXCell 8i processor achieves a
peak performance of 102.4 Gflops/s DP.

To provide detailed performance analysis of the new double
precision unit, we developed several microbenchmarks that
measure three characteristics of all instruction types: (i) latency
– from entering to exiting the instruction pipeline, (ii) local stall
– the minimum number of cycles that must elapse between two
issues to the same execution unit, and (iii) global stall – the
number of cycles the processor stalls before any more
instructions can be issued. The microbenchmarks are coded in
assembly and thus were not subject to compiler optimizations.

The latencies (in cycles) for each instruction group are
shown in Fig. 4. The only difference in performance between
the Cell BE and the PowerXCell 8i is observed on the FPD
(Floating-Point Double) instruction group. The latency of FPD
instructions is decreased from 13 cycles on the Cell BE to 9
cycles on the PowerXCell 8i.

The repetition distance, the number of cycles between
consecutive uses (i.e., the sum of local and global stalls for
each instruction group) is shown in Fig. 5. Note that a value of
one corresponds to execution units that are fully pipelined. The
only execution unit not fully pipelined in the Cell BE was the
FPD unit, which in the new PowerXCell 8i processor is fully
pipelined. This modification gives the SPEs in the PowerXCell
8i the expected peak performance of 102.4 Gflops/s at 3.2GHz.

0

1
2

3

4

5

6

7

8

9

10

11

12
13

14

BR FP6 FP7 FPD FX2 FX3 FXB LS SHUF

La
te

nc
y

(c
yc

le
s)

Cell BE
PowerXCell 8i

Figure 4. Latency of each execution group

0

1

2

3

4

5

6

7

8

9

10

BR FP6 FP7 FPD FX2 FX3 FXB LS SHUF

R
ep

et
iti

on
 (c

yc
le

s)
Cell BE
PowerXCell 8i

Figure 5. Repetition distance of each execution group

The PowerXCell 8i’s impact on several scientific
applications of interest to LANL (VPIC, SPaSM, and Milagro)
has recently been evaluated [15]. The PowerXCell 8i increases
the performance of both SPaSM and Milagro by a factor of
1.5x. VPIC doesn’t show significant improvements on this new
processor as its calculations use single precision floating-point
operations. As we show in Section VI a further application,
Sweep3D, achieves a factor of almost 2x on the PowerXCell
8i.

B. Memory subsystem performance
Due to the complex memory hierarchy and heterogeneity of

Roadrunner, exploiting locality is very important to achieving
good performance. Knowledge of the memory performance at

each level gives insight into optimizations for this system.
Streams [16] is used to quantify the performance of each of
Roadrunner’s three processors’ memory systems: the SPE’s
local store and access to main memory, the PPE’s access to
main memory, and the Opterons conventional memory system.
Each SPE dispatches one 128-bit load with a load latency of 6
cycles [3]; pipelined, this gives a maximum bandwidth of 51.2
GB/s. The maximum bandwidth for both the SPE and the PPE
to main memory is 25.6 GB/s. As shown in Fig. 1, access is
provided by the memory controller interface via the EIB. The
eight SPEs and the PPE share access to the memory controller
through the EIB which runs at 96 bytes/cycle. The Opteron has
a maximum bandwidth of 10.7 GB/s per socket to main
memory, again as shown in Fig. 1. Streams results are shown
in Table III. The results reported are from the Streams TRIAD,
and are for a single SPE or by socket on the Opteron and the
PPE. For the SPE we report results from accessing the local
store as this is the only directly addressable memory. The
measured results show that the PPE is a bottleneck and is best
used for control functions such as setting up memory regions
for the SPEs to use. The latency to memory was measured
using memtime, a microbenchmark designed to access one
word per cache-line. Each word that is read is used to
determine the address of the next word. By altering the total
size of the data, the latency to each level of the memory
hierarchy can be obtained. The measured latency to main
memory is also listed in Table III.

TABLE III. MEASURED MEMORY PERFORMANCE OF ROADRUNNER
PROCESSORS

 Stream Triad
(GB/s)

Latency (memtime)
(ns)

Opteron 5.41 30.5
PowerXCell 8i (PPE) 0.89 23.4
PowerXCell 8i (SPE) 29.28 9.4

C. Communication subsystem performance
An important performance aspect of the triblade and overall

system design is the achievable communication performance.
Here we analyze the communication performance within the
triblade (intranode) and of the entire system (internode). On a
Roadrunner triblade, only the Opteron blade is connected to the
InfiniBand network. Cell blades can only communicate with
each other and with other triblades indirectly by transferring
data over he PCIe bus to an Opteron and having the Opteron
forward the data over InfiniBand (then back over PCIe to a
target Cell). We use the DaCS communication library [17] for
Cell-Opteron and Opteron-Cell communication and MPI
(specifically, Open MPI [18]) for communication between
Opterons in different triblades.

A set of three communication ping-pong tests were
developed to determine the achievable latency and bandwidth
of each component of a Cell-to-Cell data transfer. One test
measures the DaCS/PCIe latency between a Cell and an
Opteron, one test measures the MPI/InfiniBand latency
between Opterons in different triblades, and one test measures
the latency of a complete Cell-Opteron-Opteron-Cell message
path. Computing the difference among these latencies shows
the breakdown of the latency of a zero-byte message as it
travels from a Cell to its corresponding Opteron, over the

network to another Opteron, and back down to a Cell. Fig. 6
shows that the major communication cost resides in the
communication between the Cell and the Opteron; the current
implementation of DaCS and the corresponding PCIe driver
has a higher latency than that of Infiniband. The
communication between the Opterons is comparatively fast,
probably due to the relative maturity of the Open MPI and
InfiniBand software stacks. Overall, the latency of a message
between a Cell and another Cell located in a different node is
8.78µs as measured with the current software.

Opteron to Cell
(via DaCS over PCIe)

Opteron to
Opteron (via MPI
over InfiniBand)

Cell to Opteron
(via DaCS over PCIe) Lo

ca
l

Lo
ca

l

3.19μs 3.19μs2.16μs0.12μs 0.12μs

8.78μs

Figure 6. Breakdown of the latency of a zero-byte message as it travels from
a Cell to another Cell located in a different node.

The unidirectional and bidirectional performance for Cell-
to-Cell communication is shown in Fig. 7 for both intranode
and internode communication. The bidirectional bandwidth is
taken to be the sum of bandwidths in both directions and is
compared to twice the unidirectional bandwidth. All curves in
Fig. 7 depict the worst-performing pair when all Cell-Opteron
pairs are in use. In the intranode (PPE-Opteron) case, the
bidirectional bandwidth is 64% of the double-unidirectional
bandwidth (1,295 MB/s vs. 2,017 MB/s). In the internode
(PPE-Opteron-Opteron-PPE) case, the bidirectional bandwidth
is 70% of the double-unidirectional bandwidth (375 MB/s vs.
536 MB/s).

The unidirectional bandwidth between the Opteron cores in
two nodes is shown in Fig. 8. The unidirectional bandwidth
varies depending on the cores that are actually communicating,
due to proximity of the Infiniband HCA being closer to one
pair of Opteron cores as described in Section II. Significantly
better bandwidth is obtained when cores 1 and 3 communicate
(1,478 MB/s) than when cores 0 and 2 communicate (1,087
MB/s). Cores 1 and 3 (and their memory) are closer to the
HCA than cores 0 and 2.

 0.1

 1

 10

 100

 1000

10000

1M256K64K16K4K1K256641641

B
an

dw
id

th
 (M

B/
s)

Message size (B)

Intranode, bidirectional
Intranode, unidirectional×2

Internode, bidirectional
Internode, unidirectional×2

Figure 7. Intra- and internode bandwidth (PPE to PPE)

0

200

400

600

800

1000

1200

1400

1600

1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6 1E+7
Message size (Bytes)

B
an

dw
id

th
 (M

B
/s

)

Cores 0 or 2

Cores 1 or 3

Core 0 to Core 1

Figure 8. Internode unidirectional bandwidth (Opteron to Opteron)

A comparison between the current DaCS PCIe performance
to that observed on the Infiniband is shown in Fig. 9. This is an
interesting comparison because both communication transfers
are over an 8x PCIe bus. In fact, the test is slightly biased in
favor of DaCS because the MPI-over-InfiniBand ping-pong
data represents network crossing in addition to two PCIe
crossings—one on the sending node and one on the receiving
node. Comparing the DaCS performance to the InfiniBand
performance on the left-hand y-axis reveals that the InfiniBand
achieves significantly more bandwidth than current DaCS. The
ratio of the two curves is plotted using the right-hand y-axis.
Although the ratio approaches 1 for large message sizes, at
smaller messages in the range 0 to 20KB, DaCS achieves less
than half the bandwidth of InfiniBand. This performance
should improve as the DaCS software matures.

0

100

200

300

400

500

600

700

800

900

1000

1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6
Message Size (B)

Ba
nd

w
di

th
 (M

B/
s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

R
el

at
iv

e
Pe

rf
or

m
an

ce
 (i

nt
er

 v
s.

 in
tr

a)

Intra-node (Cell -> Opteron)

Inter-node (Opteron -> Opteron)

Relative (inter vs intra)

Figure 9. InfiniBand vs. DaCS PCIe performance

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0 360 720 1080 1440 1800 2160 2520 2880
Node

tim
e

(u
s)

Figure 10. Zero-byte latency from MPI rank 0 to other nodes

Fig. 10 shows the latency from MPI rank 0 to each of the
other 3059 nodes for a zero-byte message. Rank 0
communicates to each of the other nodes in sequence with no
network contention. The switch hierarchy as described in
Section II-B is observed from the message latency. The first
seven neighbor nodes are connected to the same crossbar as
node zero and observe the minimum latency of 2.5µs. The
performance plateau around 3µs reflects the latency to the other
nodes in the same CU. The next network level increases the
latency to approximately 3.5µs to the 12 CUs that are 5 hops
away. Here we can observe periodic lower latencies, every 90
nodes, that are due to the unique wiring between CUs as
described in Section II-B. The final plateau shows the latency
of the extra switch traversals (7 hops) to reach the last 5 CUs,
here we see latency of just under 4µs. A similar test with a
1MB message from MPI rank 0 to all other nodes reports an
average bandwidth to the nodes of 980 MB/s under default
OpenMPI parameters and 1.6GB/s when memory buffers are
pinned.

In the next section we take these results into consideration
in porting and optimizing the Sweep3D application to the
Roadrunner architecture.

V. APPLICATION CASE STUDY: SWEEP3D
The components of Roadrunner each exhibit high

performance as observed by the analysis of the processing
characteristics of the PowerXCell 8i and the intranode and
internode communication characteristics. In the following two
subsections we describe a particular application, Sweep3D, and
its optimization for Roadrunner. Sweep3D is a challenging
application on large-scale systems, in that it exhibits
parallelism at different levels of granularity and because
typically it does not achieve high single-core efficiency [19].
Its processing characteristics are representative of production
applications of interest to LANL.

A. Overview of Sweep3D
Sweep3D solves a single-group time-independent discrete

ordinates (SN) neutron-transport problem. The input data is
specified in a 3-D Cartesian geometry with dimensions I, J, and
K. Sweep3D is commonly run in weak-scaling mode with each
process computing on the same number of grid-points
regardless of the number of processes used. The global data
grid of size (I×n)×(J×m)×K is decomposed in two dimensions
across a logical 2-D processor array of size n×m. The unit of
work in Sweep3D is a block of the K dimension which is split
into K/MK blocks, where MK is the blocking factor. At most
one block is computed on a processor in any one time-step.
Blocking is used to achieve high parallel efficiency rather than
to maximize cache utilization [19].

The underlying algorithm in Sweep3D corresponds to a
wavefront. The computation consists of a succession of
wavefronts in which each processor performs a computation on
the data it owns, updates its block’s boundaries with data from
its upstream neighbors, and sends updated boundaries to its
downstream neighbors. The algorithm initiates wavefronts in
each one of the corners of the eight octants of the 3-D problem
space. A subgrid is computed for a number of angular values
once its upstream boundary information is available, producing
boundaries that are passed downstream. Communication using
MPI is used to transfer boundary results. The progression of the
sweep calculation in 1-D, 2-D, and 3-D are shown in Fig. 11
for four steps. The inflows to, and outflows from, a single
element are also shown for a particular wavefront direction.

1 2 3 4

1-D

2-D

3-D

Previously processed
Inflow

Single
Element

Subgrid

Step:

Wavefront edge
Outflow

Figure 11. Wavefront propagation in Sweep3D.

B. Implementation of Sweep3D on the Cell
Sweep3D was one of the first scientific applications ported

to the Cell architecture [20], wherein the investigators reported
good performance using a master/worker paradigm. In this
early implementation the unit of work was a single “pencil” of
work in the I dimension. However, the approach required a
significant number of DMAs to transfer data volumes
repeatedly to SPE workers. Consequently, the performance was

bounded by the available memory bandwidth, because the
volume was large relative to the local store of the SPEs.

Rather than using a master/worker arrangement, our
implementation retains the structure of the original MPI version
of Sweep3D. That is, each SPE has its own MPI rank and
processes a static allocation of an I×J×K sub-grid. This SPE-
centric approach allows balancing and overlapping of the
computation of a block in the K dimension with the
communication of the surfaces, thereby maximizing the ratio of
computation to DMA activity. In other words, our version
communicates surfaces, while the previous algorithm required
communicating entire volumes. Furthermore, much of the
communication in our implementation occurs on the high-
bandwidth Element Interconnect Bus (EIB) that interconnects
the SPEs. The PPEs in this programming model are used only
to forward messages and to handle some of the mundane
operations that are not available on the SPE, such as main-
memory allocation. To implement Sweep3D in this way the
Cell Messaging Layer was used (see Section V-C).

Other optimizations were implemented to take advantage of
dual issue and the SIMD instructions on the SPEs. The number
of angles within an octant was fixed at six and the inner loop
nest was re-ordered so that the angle loop was innermost. This
allowed the processing of two of the six angles at a time using
SIMD instructions. This inner loop was then unrolled three
times. In this way all six angles are efficiently computed in a
single iteration. The SPE is a dual-issue processor but only if
the correct instruction mix is available for the odd and even
pipelines [21,22]. Taking this into account, instructions were
interleaved for these two pipes by rearranging non-dependent
code and unrolling and adding temporary variables so that
more instructions were available to fill the two pipes. Also, the
order of the instructions was carefully chosen to hide as much
of their latencies as possible. Another issue to be addressed in
programming the Cell is the small size of the local store. The
size of the computational work block is I×J×(K/MK) in
Sweep3D and the blocking parameter, MK, must be carefully
chosen so that the block fits into the local store. Given that the
subgrid resides in the main memory, fetching and storing each
block requires the SPEs to DMA to/from the main memory.

C. Sweep3D communication support
Communication in Sweep3D is handled by the Cell

Messaging Layer1 (CML) [23], a message-passing library for
the Cell that implements a subset of MPI [14]. The key
abstraction provided by CML is that the cluster appears to be a
sea of interconnected SPEs. Each SPE in the entire cluster has a
unique MPI rank, and any SPE can communicate with any
other SPE regardless of whether the SPEs are in the same
socket, the same blade, the same node, or different nodes. CML
was in fact designed in concert with our Sweep3D
implementation and supports all of the MPI functions needed
by Sweep3D including point-to-point messaging, barriers,
broadcasts, and data reductions. The advantage of CML's SPE-
centric model is that MPI codes can be ported quickly to the
Cell, then incrementally modified to stage data in and out of
main memory and to exploit the SPE's vector units.

1 http://cellmessaging.sourceforge.net/

In CML, the PPE and Opteron are subservient to the SPE
and are used primarily for shuttling messages to SPEs in other
blades. However, CML does provide a convenient remote
procedure call (RPC) mechanism that enables a SPE to invoke
a function on the PPE, and the PPE to invoke a function on the
Opteron, and receive the result. Our Sweep3D implementation
uses RPC functions to invoke malloc() on the PPE in order
to allocate main-memory buffers that can be used for holding
intermediate results. Roadrunner does not expose the parallel
filesystem to the PPEs, so our Sweep3D invokes an RPC
function on the Opteron to read and return the input file.

The CML implementation is structured for high-speed
communication. Messages sent between SPEs in the same
socket, or cache-coherent sockets within a blade (as in a stock
QS21 blade [24,25], not the case in Roadrunner), can proceed
entirely over the high-speed Element Interconnect Bus (EIB)
with no PPE involvement. Within a socket, CML peak
performance has been measured as 0.272µs latency for a zero-
byte message and 22.4GB/s for a large (128KB) message.
Communication between SPEs in different sockets involves
DMAs to the PPE, which transfers the data to a target PPE
using MPI; the target SPE then DMAs the message from its
PPE. On Roadrunner, since PPEs are not directly connected,
each PPE forwards all SPE MPI requests over the PCIe bus to
its corresponding Opteron using DaCS, and the Opteron
performs the MPI operations on behalf of the PPE.

VI. PERFORMANCE OF SWEEP3D
The performance of Sweep3D was first measured on a

single PowerXCell 8i processor. The input file specified a
5×5×400 sub-grid size per SPE in weak-scaling mode with a
blocking factor of 20 K-planes (MK=20) with the number of
angles fixed at 6. Fig. 12 shows the iteration time for a single
SPE of the PowerXCell 8i and all 8 SPEs in a single processor.
For comparison, the figure also shows the performance of the
original version of Sweep3D running on dual-core and quad-
core AMD Opterons as well as a quad-core Intel Tigerton. It
can be seen that the implementation of Sweep3D on a single
SPE of the PowerXCell 8i achieves a runtime comparable to a
single core of the Intel and AMD processors. The performance
of the full socket (8 SPEs) is twice that of the quad-core
processors and almost 5 times that of a dual-core Opteron.

A performance comparison of the Sweep3D
implementation described here to that previously reported by
other researchers [20] is given in Table IV. The problem
compared is the 50x50x50 subgrid, with MK blocking of 10,
and the number of angles (MMI) set to be 6. The table shows
that the performance is significantly higher for the
implementation reported here and that the PowerXCell 8i’s
improved double-precision floating-point capability can also
substantially improve the performance delivered to
applications. For Sweep3D the improvement is a factor of 1.9x.

TABLE IV. PERFORMANCE COMPARISON OF SWEEP3D
IMPLEMENTATIONS FOR THE CELL.

` previous Sweep3D our Sweep3D
CBE 1.3 s 0.37 s
PowerXCell 8i N/A 0.19 s

0

100

200

300

400

500

600

700

800

Opteron (Dual-
core 1.8GHz)

Opteron (Quad-
core 2.0GHz)

Tigerton (Quad-
core 2.93GHz)

Pow erXCell8i

Ite
ra

tio
n

tim
e

(m
s)

single core (5x5x400)

single socket (10x20x400)

Figure 12. Performance comparison of Sweep3D

A. Performance at Scale
In this section we examine the performance of Sweep3D at

large-scale on the pre-production Roadrunner system. Using a
subgrid size of 5x5x400 per SPE, the achieved performance
from a non-accelerated code (Opteron only), and from the
accelerated code that used the PowerXCell 8i processors is
shown in Fig. 13. The time for one iteration is shown when
using between 1 and 3,060 nodes of Roadrunner (the full 17CU
system). It can be seen that the measured times on the
PowerXCell 8i processors are substantially lower than that on
the Opterons.

The use of DaCS as the underlying transport mechanism for
CML introduces some overheads in terms of increased latency
and decreased bandwidth across the PCIe bus between the
PowerXCell 8i and the Opteron. The peak PCIe performance
was measured using a small microbenchmark showing that the
achievable peak bandwidth is 1.6GB/s (unidirectional) and
with a minimum latency of 2µs. This is substantially better than
that seen for the achieved DaCS latency as shown in Fig. 6, and
achieved unidirectional bandwidth shown in Fig. 7.

Using a performance model of Sweep3D [19], which has
been validated on most large-scale systems over the last
decade, we have predicted what the best achievable
performance should be. This is also shown in Fig. 13 utilizing
the peak PCIe performance characteristics. The peak PCIe
performance will not be realized in practice as overheads
induced by flow control and multiple buffering when dealing
with multiple communications will be required for transmission
correctness. However, as shown in Fig. 13, the performance of
the current implementation is close to the best achievable at
small scale, and could be improved by almost a factor of two at
large scale. We expect that some of this performance
improvement will be realized before Roadrunner becomes a
production machine in late 2008.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

30
60

Node Count

Ite
ra

tio
n

tim
e

(s
)

Opteron only

Cell (Measured)

Cell (best)

Figure 13. Performance of accelerated and non-accelerated Sweep3D on
Roadrunner.

The relative performance between the accelerated, and non-
accelerated version of Sweep3D on Roadrunner is shown in
Fig. 14. Both the current measured improvement and that
modeled using the peak PCIe performance is shown in Fig. 14.
It can be seen that currently almost a factor of two higher
performance is achieved when using the accelerators in
Roadrunner. The performance improvement may be as high as
4x at large-scale if the peak PCIe performance were to be
realized.

0

1

2

3

4

5

6

7

8

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

30
60

Node Count

Fa
ct

or
 P

er
fo

rm
an

ce
 Im

pr
ov

em
en

t

Improvement (Measured)

Improvement (best)

Figure 14. Performance improvements of Sweep3D between the use of the
PowerXCell 8i and the Opteron processors in Roadrunner.

VII. CONCLUSIONS
In this work we have introduced the architecture of a large-

scale hybrid system being deployed at LANL in 2008.
Roadrunner contains both conventional micro-processors
alongside IBM PowerXCell 8i accelerator processors. We have
presented the basic system characteristics of Roadrunner and of
the new PowerXCell 8i chip. Performance characteristics of
the PowerXCell 8i show a significant performance
improvement over the earlier implementation of the Cell
Broadband Engine (Cell BE) by a factor of 7x on double-
precision floating point operations. We also have illustrated the
high communication performance that is available within a
compute-node as well as between compute nodes.

Though Roadrunner is the first system to achieve over a
sustained petaflop on the LINPACK benchmark, the real
benefit of the system results from achieved application
performance. In this work we have shown that an optimized
version of a demanding application, Sweep3D, achieves
significant speedup on the PowerXCell 8i compared to current
state of the art multi-core processors from AMD and Intel, as
well as the older Cell BE processor. The implementation of
Sweep3D is also compared to a previous implementation on the
Cell BE, indicating a speedup of 3x. Finally performance
results of Sweep3D at full scale of Roadrunner running on all
3,060 compute nodes utilizing all 97,920 SPEs were presented.
These results show a 2x speedup over the base system, which is
running early versions of the communication software. We then
show through the use of highly accurate performance modeling
the expected performance gains of the full Roadrunner system
once the software layers are optimized to more closely match
the achievable hardware performance. For small scale jobs the
expected performance advantage is 10x, and for large-scale
jobs the performance advantage is 5x. This clearly illustrates
the performance potential of Roadrunner and advantage that a
hybrid accelerator design can have in terms of performance.

ACKNOWLEDGEMENTS
We would like to thank the many members of the

Roadrunner teams at LANL and IBM for their technical work
towards the development and deployment of Roadrunner from
which this work benefited significantly. We also like to thank
the many members of the IBM team for their support and
access to the pre-production Roadrunner. Also we recognize
Olaf Lubeck, Ram Srinivasan, and Greg Johnson for their early
work on porting Sweep3D to the Cell Broadband Engine, and
to Cornell Wright of IBM for his help with early access to the
PowerXCell 8i and help during access to the full Roadrunner
system.

REFERENCES
[1] HPCS, High Productivity Computing Systems initiative in DARPA,

Available from http://www.darpa.mil/ipto/programs/hpcs
[2] Michael Gschwind, IBM, H. Peter Hofstee, Brian Flachs, Martin

Hopkins, Yukio Watanabe, Takeshi Yamazaki, “Synergistic Processing
in Cell's Multicore Architecture”, IEEE Micro, 26(22):10-24, March
2006.

[3] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and
D. Shippy, Introduction to the Cell Multiprocessor. IBM Journal of
Research and Development, 49(4):pp.589—604, 2005.

[4] Catherine Crawford, Paul Henning, Michael Kistler, Cornell Wright,
Accelerating Computing with the Cell Broadband Engine Processor.
ACM Computing Frontiers 2008, Ischia, Italy.

[5] Michael Gschwind, The Cell Broadband Engine: Exploiting Multiple
Levels of Parallelism in a Chip Multiprocessor. International Journal of
Parallel Programming, 35(3):pp. 233—262, 2007.

[6] Samuel Williams, John Shalf, Leonid Oliker, Shoaib Kamil, Parry
Husbands, and Katherine Yelick. The Potential of the Cell Processor for
Scientific Computing. In proc. ACM Int. Conf. on Computing Frontiers,
2006, Ischia, Italy.

[7] Samuel Williams, John Shalf, Leonid Oliker, Shoaib Kamil, Parry
Husbands, and Katherine Yelick, Scientific Computing Kernels on the
Cell Processor, Int. J. of Parallel Programming, 35(3):263–298.

[8] Sriram Swaminarayan, Kai Kadau, and Timothy C. Germann. 350-450
Tflops Molecular Dynamics Simulations on the Roadrunner General-
purpose Heterogeneous Supercomputer. ACM Gordon Bell Prize
finalist, n proc. of the ACM/IEEE SC2008 Conference, Austin, Texas,
November 2008.

[9] Brian J. Albright, Benjamin K. Bergen, Lin Yin, Kevin J. Barker, and
Darren J. Kerbyson. 0.365 Pflop/s Trillion-particle Particle-in-cell
Modeling of Laser Plasma Interactions on Roadrunner. ACM Gordon
Bell Prize finalist, in proc. of the ACM/IEEE SC2008 Conference,
Austin, Texas, November 2008.

[10] Jack J. Dongarra, Piotr Luszczek, and Antoine Petitet. The LINPACK
benchmark: Past, present and future. Concurrency and Computation:
Practice and Experience, 15(9):803–820, August 2003.

[11] International Business Machines Corporation. Accelerated Library
Framework for Hybrid–x86: Programmer's Guide and API Reference.
Technical document SC33-8406-00. IBM SDK for Multicore
Acceleration version 3, release 0. 2007. Available from
http://tinyurl.com/5cyfc9.

[12] International Business Machines Corporation. C/C++ Language
Extensions for Cell Broadband Architecture, Version 2.5. February 27,
2008. Available from http://tinyurl.com/5stuga.

[13] International Business Machines Corporation. Data Communication and
Synchronization Library for Hybrid–x86: Programmer's Guide and API
Reference. Technical document SC33-8408-00. IBM SDK for Multicore
Acceleration version 3, release 0. 2007. Available from
http://tinyurl.com/6kn98k.

[14] Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker, and Jack
Dongarra. MPI: The Complete Reference, volume 1, The MPI Core. The
MIT Press, Cambridge, Massachusetts, 2nd edition, September 1998. 1st
edition is available from http://www.netlib.org/utk/papers/mpi-
book/mpi-book.ps.

[15] John A. Turner, Roadrunner Applications Team: Cell and Hybrid
Results to Date. Los Alamos National Laboratory presentation.

Available from
http://www.lanl.gov/orgs/hpc/roadrunner/rrinfo/RR%20webPDFs/Turne
r_Apps_v6_LA-UR.pdf

[16] John McCalpin. "Memory bandwidth and machine balance in current
high performance computers", in IEEE Comp. Soc. Tech. committee on
Computer Architecture (TCCA) Newsletter, pages 19-25, Dec. 1995.

[17] International Business Machines Corporation. Data Communication and
Sychronization for Hybrid-x86 Programmer's Guide and API Reference,
version 3.0. October 19, 2007..

[18] Richard L. Graham, Galen M. Shipman, Brian W. Barrett, Ralph H.
Castain, George Bosilca, and Andrew Lumsdaine. Open MPI: A high-
performance, heterogeneous MPI. In Fifth International Workshop on
Algorithms, Models and Tools for Parallel Computing on
Heterogeneous Networks (HeteroPar'06), pp. 1–9, Barcelona, Spain,
September 2006.

[19] Adolfy Hoisie, Olaf M. Lubek, Harvey J. Wasserman, Performance and
Scalabilty Analysis of Teraflop-Scale Parallel Architectures Using
Multidimensional Wavefront Applications. Int. J. High Performance
Computing Applications, 14 (4): 330--347, November 2000. Available
from
http://www.c3.lanl.gov/pal/publications/papers/terraflop00:parallel.pdf

[20] F. Petrini, G. Fossum, J. Fernandez, A. L. Varbanescu, N. Kistler, M.
Perrone, Multicore Surprises: Lessons Learned from Optimizing
Sweep3D on the Cell Broadband Engine, in proc. Int. Parallel and
Distributed Processing Symposium, Long Beach, California, 2007.

[21] A. Eichenberger et.al., .Optimizing Compiler for the Cell Processor,
PACT 2005, September 2005.

[22] Kevin Krewell. Cell moves into the limelight. Microprocessor Report,
pp. 1–9, February 14, 2005.

[23] Scott Pakin. Receiver-initiated Message Passing over RDMA Networks.
In Proceedings of the 22nd IEEE International Parallel and Distributed
Processing Symposium (IPDPS 2008), Miami, Florida, April 2008.
Available from
http://www.c3.lanl.gov/PAL/publications/papers/Pakin2008:cellmsg.pdf.

[24] Thomas Chen, Ram Raghavan, Jason N. Dale, and Eiji Iwata. Cell
Broadband Engine Architecture and its first implementation—a
performance view. IBM Journal of Research and Development,
51(5):559–572, September 2007. Available from
http://www.research.ibm.com/journal/rd/515/chen.pdf.

[25] Ashwini K. Nanda, J. Randal Moulic, Robert E. Hanson, Gottfried
Goldrian, Michael N. Day, Bruce D. D’Amora, and Sreeni Kesavarapu.
Cell/B.E. blades: Building blocks for scalable, real-time, interactive, and
digital media servers. IBM Journal of Research and Development,
51(5):573–582, September 2007. Available from
http://www.research.ibm.com/journal/rd/515/nanda.pdf.

