
1

A Common Workload Interface for the Performance Prediction
of High Performance Systems�1

E. Papaefstathiou, D.J. Kerbyson, G.R. Nudd,
D.V. Wilcox, J.S. Harper, S.C. Perry

High Performance Systems Group
Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK

{stathis,djke}@dcs.warwick.ac.uk

Abstract

There is a wide range of performance models being developed for the analysis of
present and future generation systems. A major concern in using these models
however, is the provision of realistic application workload information. There is a
need for a common interface that couples generic workload information to the
underlying hardware characteristics. In this work a three level framework is described
which enables the definition of workload information (both computational and
mapping), and hardware performance characteristics to be included, in a modular and
reusable format. The approach lends itself to performance studies that can be used in
cross-platform performance comparisons as well as guiding the design and
implementation of code on a single system. This is currently in use for the analysis of
High Performance Computing systems but may equally be applicable in other
domains where the analysis of resources is a concern.

1 in IEEE Int. Symp. On Computer Architecture, Workshop on Performance Analysis in Design (PAID’98), Bar-
celona, June 1998.

1. Introduction

The design and implementation of a system is
typically a lengthy procedure that requires many
choices to be made, many of which will effect the
achievable final performance considerably. This is
further complicated in high performance computing
where complex interactions between processing
elements, memory systems and input/output channels
take place. In addition, when considering the use of
these systems, application code needs to be carefully
implemented to take advantage of the underlying
hardware in order to achieve performance. There is a
clear need for the study of performance at each and
every stage of the system development.

The choices available to both hardware and software
engineers can be considered as being a sequence of
what-if scenarios. That is to say, questions such as
’what is the impact on performance if the software is

implemented like ...’ are often asked, and answered
(by the engineers) in an ad-hoc manner. Such
scenarios occur in many places in the design and
implementation. For example:
In hardware design:

Architecture - choice in the system component
architecture that effects performance, (e.g. in
communication bandwidths, memory design).

In software design:
Algorithmic - choice of core algorithms in the
software for key numerical routines, and
Mapping - choice of implementation in terms of
parallelisation and use of system resources

In procurement:
System - choice of system for the execution of
code, when several are available. This can
considered further, in the choice of a system to
be used for the execution of an application when
several systems are available. (e.g. for use in on-
the fly scheduling [7]).

2

Fast and accurate performance prediction can be used
to provide information on the resulting performance,
which may be used to guide the design [2,12]. Such
technology needs to consider hardware specifics, and
the workload placed on the system by the application
software both in terms of its constituent computation
demands, and also its mapping onto the system.
In the work described here, a three-tier performance
framework is discussed that allows workload
information to be defined (both computational and
mapping), along with system specific performance
characteristics. The framework has been carefully
designed using object orientated principles and
allows modular descriptions to be interchanged. The
framework has been conceived to explore software
design and implementation choices but is equally
applicable to changes in the target system
performance characteristics (in either existing or
future systems). As is shown in the following
sections, performance studies can be undertaken for
different target architectures with no alteration to the
workload descriptions. A toolset, PACE, is under
development at Warwick which aims to address these
issues.

2. A Performance Analysis & Characterisa-
tion Environment (PACE)

PACE is a performance prediction and analysis
toolset that aims to support the definition of
workloads throughout an application’s lifecycle from
initial design through to execution on a target system.
The potential users of the tool include application
programmers without a formal training in modelling
and performance analysis. Currently, parallel
applications written in C, Fortran 77 and 90, that
utilise a message passing interface (MPI or PVM) are
supported. In principal any hardware platform that
utilises this programming model can be analysed
within PACE, but the technique has been directed to
clusters of workstations and the CRAY T3E to date.
PACE allows the utilisation of more than one
platform for an application thus providing support for
heterogeneous systems.

The core component of PACE is a performance
language, CHIP3S (Characterisation Instrumenta-
tion for Performance Prediction of Parallel Systems).
CHIP3S provides a syntax that allows the description
of the performance aspects of an application, and its
parallelisation, to be expressed. This includes control
flow information, resource usage information (e.g.
number of operations), communication patterns,
mapping, etc. The CHIP3S compiler translates the
performance scripts into C language source code
(Figure 1). This is linked to an evaluation engine
library and to hardware specific models. The former
includes the necessary steps required to combine
workload descriptions with the hardware models in

order to produce performance predictions. The final
result is an executable binary file that produces
performance predictions parameterised in terms of
problem sizes and system configurations. The user
can change these parameters by use of appropriate
command line options.

CHIP3S Script

Parallelisation
Layer

Application
Layer

Pre-defined
hardware models

Evaluation Engine

User Defined Model

Hardware Models
Compilation

binary executable

Hardware
Model 1

Hardware
Model n

Figure 1 - PACE core system

CHIP3S is an object oriented language that
adheres to a layered characterisation framework [9].
According to this framework the objects that
comprise a performance study are organised into four
categories namely: application, subtask, parallel
template, and hardware. The aim of this organisation
is the creation of independent objects that describe
the computational parts of the application (within the
application and subtask objects), the parallelisation
strategy and mapping (parallel template object), and
the system models (hardware object). CHIP3S
provides the syntax to define the workload of the
system through the application, subtask, and parallel
template objects. Hardware objects are pre-defined
with their structure, and interface, hidden from the
user.

partmp
object 1(a)

subtask
object 1

subtask
object 2

hardware
object 1

partmp
object 2(a)

application
object

subtask1
best solution

subtask 2
best solution

Figure 2 - Example HLFD illustrating possible
parallelisation and hardware combinations

A key feature of the object organisation is the
independent representations of computation,
parallelisation, and hardware. This is possible due to

3

strict object interaction rules enforced by the CHIP3S
syntax. The user can experiment to find the best
parallelisation strategy and hardware platform pair by
interchanging the appropriate objects. For example,
consider an application that includes two
computational intensive kernels that can be
parallelised with a number of parallelisation
strategies. Figure 2 shows a Hierarchical Layered
Framework Diagram (HLFD) representing such a
situation. The computational parts of the kernels are
described separately in the two subtask objects, the
various parallelisation strategies are described in
several parallel template objects associated with each
subtask, and a number of pre-defined hardware
objects exist to support various hardware platforms.
The shaded parallel templates, and hardware objects
in the HLFD show the best solution that has been
derived after experimentation with alternatives.

The performance aspects of the system are
encapsulated into a hardware object. This is a
collection of system specification parameters (e.g.
cache size, number of processors), micro-benchmark
results (e.g. atomic language operations), statistical
models (e.g. regression communication models),
analytical models (e.g. cache, communication
contention), and heuristics. Hardware models can be
incorporated into PACE through the use of an
Application Programming Interface (API). The API
allows third party model developers to incorporate
their system component models into the PACE
hardware library. These models can represent
performance characteristics from measurements (for
available systems) but also may represent possible
performance characteristics for future systems.

The features of PACE that promotes the
development of extended workload descriptions for
different level of representation abstractions are
discussed below.

2.1 Model Abstraction

Different levels of abstraction in performance
modelling is a fundamental requirement that is able to
support the lifecycle of an application. PACE allows
the definition of many levels of model abstraction,
and is a combination of two factors:

1. the level of detail of the control flow
information, and

2. the type of resource usage associated with
each control statement.

For example, consider the two short CHIP3S code
segments, 1 and 2, below. These represent the same
computation stage of part of an application code. The
exact function and the operations performed need not
be known for this example.

The computation parts are expressed in CHIP3S
as control flow procedures. The statements in the
procedure (compute, loop) might represent an
arbitrary number of operations. Each statement is
associated with an operation count vector (<...>)
that represents the resources required to execute that
operation. Code 1, includes a fairly detailed
representation of the actual code and the operation
count done in terms of C language operations. This
type of model can be obtained when the source code
is available. Code 2 represents the same computation
in a high level of abstraction. The control flow is not
a one to one correspondence to the actual source
code and the operation count considers only to pre-
dominant operations (in this case floating point). This
type of model might be developed in the analysis and
specification stages to determine bounds of
performance.

subtask merge {
 ...
 proc cflow Txsort {
 compute <is clang, 3*IASG>;
 loop <is clang, WHILE,ICMP>,dtpp
 compute <is clang,ICMP, FCMP,IADD,
 4*VIDX>;
 loop <is clang, WHILE,ICMP>,dtpp
 compute <is clang, IMUL,2*IADD,
 2*VIDX, FASG>;
 loop <is clang, WHILE, ICMP>,dtpp
 compute <is clang, IASG, 2*IADD,
 2*FASG>;
 }
 ...
}

Code 1 - C Operations

subtask merge {
 ...
 proc cflow Txsort {
 loop <0>, dtpp
 compute <is flops, CMP,3*ASG>;
 }
 ...
}

Code 2 - Floating Point Operations

The level of abstraction for the control flow is
selected by the user depending on the lifecycle stage.
PACE provides many resource usage descriptions.
Computation operations can be expressed as
predominant operations (e.g. floating point [5]), high
level language operations (e.g. FORTRAN language
[10]), intermediate code operations (e.g. SUIF [3]),
and component timing. Communication operations
similarly can be high level where only the length of
message and the distance amongst the processors is
specified. In a detailed level, the communication
descriptions can represent the message passing calls
of the application in a one to one match and may
include initialisation times, data packing, etc.

2.2 Performance Prototyping and Static
Performance Prediction

4

PACE provides tools to automate model
development. The Application Characterisation Tool
(ACT) provides a semi-automated method to produce
CHIP3S scripts from existing sequential or parallel
code. The process of characterising the application
with ACT is shown in Figure 3. Initially, the code is
processed through the SUIF front end [3] and the C
or FORTRAN application code is translated into the
SUIF intermediate format. The program unknowns
(e.g. loop iterations, conditional probabilities) that
are not resolved by the static analysis are identified
by either a profiler or manual user specification. The
former provides an automated root in producing
CHIP3S scripts but the model can only then be used
to predict the performance of the application given a
single problem size. Manual parameter specification
removes this problem. ACT includes a mechanism to
minimise the instances where the user intervention is
needed. Given the intermediate format representation
of the application and the problem unknowns, ACT
produces the CHIP3S source code for both the
computation and parallel parts of the application.

SUIF
Front End

Source
Code

SUIF
Format ACT

Parallelisation
Layer

Application
Layer

CHIP3S Script

Profiler

+

Program
Unknowns

Figure 3 - Model creation process with ACT

During the implementation stage, when the
parallel source code is available, ACT can be
employed as a static performance prediction tool [1],
Figure 4. The performance of the application can
then be analysed for several parallel platforms,
provided they are available as hardware objects.

PACE allows the development of models even
when parts of the source code are not available.
Performance prototyping is the terminology that is
used within PACE for these types of performance
studies. While functional prototyping aims to mimic
the functionality of an application, performance
prototyping aims to mimic the performance
characteristics of the application. In the design stage
a performance prototype of a parallel algorithm is
required and in many cases the computational parts
can be extracted by the sequential application with
ACT, Figure 4. The parallelisation parts of the model
(parallel template objects) can be developed by hand.
Since, this is just a prototype only the predominant
performance parts of the algorithm should be

represented in the model. For example, if PVM is the
message passing employed only the communication
statement could be represented in the model
(ignoring packing/unpacking, initialisations, etc).

Parallelisation
Design (a) Application

ACT

Application
Layer

Parallelisation
Layer

CHIP3S Script

Static Prediction

Performance
Prototyping

Figure 4 - Use of ACT for static performance
estimations and performance prototyping

3. A Case Study

An example of performance analysis using PACE is
illustrated for a small case study using an image
processing application. IPKERNEL is an image
processing application that identifies blob like
objects in an image [8]. The application was
parallelised for a cluster of workstation with the
PVM message passing library. The Hierarchical
Layered Framework Diagram of the application is
shown in Figure 5. This diagram shows the main
components in this application and includes twelve
subtasks, four different parallel templates, and a
PVM model for a SUN workstation cluster. Each
object in this diagram is constructed using a separate
CHIP3S performance script and the arcs indicate the
passing of parameters between objects. A single
application object determines the ordering of the
subtasks.

The performance model for the application was
produced by ACT with some user guidance to specify
a number of program unknowns. PACE provides
tools to perform scalability analysis and bottleneck
analysis on when varying system and/or application
parameters. However, the most commonly output
facility is the creation of predictive trace files [6].
These are analogous to traditional traces obtained at
run-time but contain predicted time information. The
user can employ any monitoring tool to visualise the
various performance aspects (e.g. [4,11]). An
example predictive trace output is shown in Figure 6
which details a segment of the predictive behaviour
of IPKERNEL on seven workstations.

5

subtask

applicationApplication layer

Parallel template layer

Hardware layer

thresh blobcolour

async mastcomm async swap async side async

pvmsun

improc

sobel norm histo percent spoke median buildCentsideUnifybuildUnifycalcCent

Figure 5 - HLFD for the IPKERNEL application

Figure 6 - IPKERNEL utilisation gantt chart produced from Paragraph with predictive traces from PACE

This information can be used to guide the choice
of different architectural alternatives or different
software strategies during design and implementation
stages. These performance insights can be used as
and when needed and do not rely on final system
implementations. For instance in the output shown in
Figure 6 there is a clear region of idle time on
processor zero (a result of a master-slave type
parallelism with processor zero acting as the master)
which maybe avoided in a different implementation.

4. Summary

PACE is a performance analysis environment that
promotes the definition of generic workload
operations that can be reused by many system
models. The three layer structure used, allows the
separate definition of application, parallelisation, and
hardware characteristics to be made. PACE supports
both performance prototyping studies (when the
application source code is under design and is not
complete) and also static performance prediction
from available source codes. In this latter case
additional tools are available to automate the
procedure of source code translation into CHIP3S

descriptions. Following the workload
characterisation, PACE provides automated
evaluation procedures that couples the application
information with the hardware models.

The current PACE system enables performance
predictions to be made for the analysis of resources
used in High Performance Computing systems
including dedicated machines (the CRAY T3E) and
also Cluster computing environments using message
passing interfaces (MPI and PVM). Scaling analysis
are available along with predicted traces that can be
used for application refinement before final
implementation on a system.

The modular approach taken in PACE, in
separate descriptions of workload information and
the system hardware characteristics, may be equally
applicable in other domains where the analysis of
resources is a concern.

Acknowledgements

This work is funded in part by DARPA contract
N66001-97-C-8530, awarded under the Performance
Technology Initiative administered by NOSC, and by
EPSRC grant GR/L13025.

6

References

[1] T. Fahringer, Estimating and Optimizing
Performance for Parallel Programs, IEEE
Computer, Vol. 28(11), November 1995.

[2] I. Gorton and I.E. Jelly, Software Engineering
for Parallel and Distributed Systems:
Challenges and Opportunities, IEEE
Concurrency, Vol 5(3), July-September 1997.

[3] M.W. Hall, J.M. Anderson, et.al, Maximizing
Multiprocessor Performance with the SUIF
Compiler, IEEE Computer, Vol.29(12),
December 1996.

[4] M.Heath, Recent Developments and Case
Studies in Performance Visualization Using
Paragraph, In: Performance Measurement and
Visualization of Parallel Systems, Elsevier
Science Publishers, 1993.

[5] R.W. Hockney, The Science of Computer
Benchmarking, SIAM, 1996.

[6] D.J. Kerbyson, E.Papaefstathiou, and G.R.
Nudd, Is Predictive Tracing Too Late for HPC
Users?, In: R.J. Allan, A. Simpson, and D.A.
Nicole. eds., High Performance Computing,
Plenum Press, 1998.

[7] D.J. Kerbyson, E. Papaefstathiou, and G.R.
Nudd, Application Execution Steering Using
On-the-fly Performance Prediction, In: P. Sloot,
M. Bubak, and B. Hetzberger (eds.), High
Performance Computing and Networking,
Lecture Notes in Computer Science 1401,
Springer-Verlag, 1998.

[8] G.R. Nudd, T.J. Atherton, and D.J. Kerbyson,
IPKERNEL: An Image Processing Benchmark,
ESPRIT Project 5669 (MEASURE), Final
Report, 1992.

[9] E. Papaefstathiou, D.J. Kerbyson, and G.R.
Nudd, A Layered Approach to Parallel
Software Performance Prediction: A Case
Study, In: L.Dekker, W.Smit, and J.C.
Zuidervaart, eds., Massively Parallel
Processing Applications & Development, pp.
617-624, North Holland, 1994.

[10] B. Qin, H.A. Sholl, and R.A. Ammar, Micro
Time Cost Analysis of Parallel Computations,
IEEE Trans on Computers, Vol. 40(5), 1991.

[11] D.A. Reed, R.A. Aydt, et. al., Scalable
Performance Analysis: The Pablo Analysis
Environment, In: Proc. Scalable Parallel
Libraries Conf., IEEE Computer Society, 1993.

[12] C.U. Smith, Performance Engineering of
Software Systems, Addison Wesley, 1990.

