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INTRODUCTION

An underlying goal in the use of high performance systems is to apply the complex
resources to achieve rapid application execution times. It is often the case that performance
issues are considered late in the application development when major design choices and
system choices have aready been finalised. Performance tuning tools, including paralel
monitoring environments, are useful in these late stages providing a means in which to
investigate and visualise the performance effects. However, during the development of an
application, certain issues are typicaly decided upon without reference to their impact on
performance (e.g. in the choice of a numerical implementation, or in the choice of a possible
mapping to the system). There is a clear need for the study of performance at each and every
stage of the development of high performance applications.

The aim of anovel prediction toolset PACE (Performance Analysis and Characterisation
Environment), presented here, is to extend the traditional use of performance prediction to
cover the full software development cycle. It incorporates facilities for both pre-, and post-,
implementation analysis thus allowing aternatives to be explored prior to the commitment of
an application (and its mapping) to a system, and also assists in the performance tuning of
existing implementations. The approach is carefully structured consisting of modular
performance models that reflect individual parts of the whole system (e.g. software
components, parallelisation components, and system components).

Lin High Performance Computing, Kluwer Academic, March 1999, pp. 57-67.
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In this work, it is shown how PACE can be used to produce predictive traces
representing the expected execution behaviour of an application given appropriate workload
information. Predictive traces are analogous to traces collected at run-time except that the two
key issues of: timing information, and event ordering information; are both determined by the
prediction toolset. The trace data can be output from PACE in a commonly accepted format
(such as PICL and SDDF) for use in existing performance monitoring environments
(including Paragraph® and Pablo®). Thus, predicted application execution can be viewed and
examined within monitoring tools, aready familiar to users, in order to identify performance
hot-spots before system use.

A discussion of the various forms of performance analysis typically undertaken is given
in the next section. The formation of prediction traces from the modular performance
prediction toolset, PACE, is then described which illustrates the workload information
required in a performance study, along with details on the performance model evaluation
procedure to produce predictive traces. Example use of the resultant predictive traces is
illustrated utilising two existing paralel performance monitoring environments on an
example Financial Option code. The use of the predictive traces can significantly increase
efficiency in final implementations when used during the development of application code.

PERFORMANCE PREDICTIONS

There are many performance issues that should be addressed during the development of
application code which are not just confined to post-implementation ‘tuning’ analysis.
Performance models can be constructed and used for predictive type analysis through-out.
The models can range from ‘back of the envelope’ type calculations (or complexity analysis),
in early software analysis stages, to detailed models in design and implementation stages. The
level of abstraction incorporated into these models generally increases towards
implementation, and formalistic approaches such as petri-nets, or queuing networks, are often
employed to represent the structure of the sy$tem

It is generally acknowledged that there have been few attempts at tools that provide the
use and development of performance models throughout the software life-cycle mimicking
the software development itséff. Instead, individual tools are often utilised depending upon
the stage of application development. These tools do however, have one thing in common -
that is to provide the user with an estimation of execution time for a particular software
formulation on a given target platform. Issues that are important in such performance studies
include:

Execution time: a prediction of the time to execute the application given a set of
application (e.g. problem size) and system parameters (e.g. number of nodes).

Scalability: how an application’s performance changes by the increasing of either the
application and/or system parameters.

Szing: determining the size of application that can be processed given constraints on
either execution time and/or system resources

Such performance information is important in determining the time of application
execution on a system but does not provide sufficient insight into the achieved performance
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to enable refinement (tuning) of the application in a predictive sense. Further information on

the predicted application execution is required in order to promote this process. The
understanding of the system further depends upon how information is presented to the user.

The visual representation of complex phenomenon aids in the performance understanding and
behaviour of the target system. A key performance visualisation from a user’s perspective is
in the provision of space-time information (see Figure 9 for an example). This, a two
dimensional chart, can be used to visualise processor activity (space) as a function of time.

The use of a space-time diagram follows directly from the generation of a trace file at
the run-time of an application (after application porting and implementation). The trace file
collected in this way is simply a list of events, that occurred during the execution of the
application, on and between resources in the system.

Predictive traces, on the other hand, is a list of the same type of events but generated
from the use of a suitable performance prediction system. They are analogous to execution
traces and can be used and manipulated within the same monitoring performance analysis
environments, Figure 1. Thus, performance refinement or tuning, can take place in advance of
the porting (or even implementation) of an application to a target system.

Application

Execution /
Instrument with PACE
monitor library Prediction tool set

Y

Execute on Performnace model of
target system Prediction target system
trm tracefile

Monitoring
Environment

Figure 1. Analogous behaviour between execution and predictive traces.

There are three main features that need to be considered in the generation of predictive
traces from a performance prediction system, namely:

Events. The information recorded during the predicted execution (e.g. inter-processor
communication, processor idle periods, 1/0O etc.). If the predictive trace is to
accurately portray its run-time counterpart then their should be a one-one
mapping between the types of events possible.

Time stamping: Each event has an associated time-stamp to indicate when it occurred.
This is simply the processor clock in a run-time system but in a prediction system
each time-stamp needs to be individually calculated.

Ordering of events: This follows directly from accurate time-stamping to produce a
chronologically ordered list of events.



Most performance prediction tools that have been developed to date have limited
analysis capabilities, concentrating on producing overall estimates’. In the PACE toolset,
described below, it is shown how suitable workload information, concerning both the
computational aspects of an application, and their mapping to system resources, can be used
in order to provide both realistic performance estimates, and sufficient activity information of
the system to provide predictive tracing outputs.

THE PACE TOOLSET

The PACE toolset contains a number of individual components that are used to provide
realistic performance predictions of expected application execution which takes into account
the operation of the system as awhole. It considers detailed information from the application
in terms of its computational cores, its mapping onto a high performance system (including
necessary communication costs), and also time costs in terms of the underlying system
performance characteristics. This three level structure is a modular approach whereby
experimentation on factors such as the choice of the target platform, and also the mapping
(parallelisation) that should be used, can be made using a criteria such as that to obtain best
application performance.

The PACE toolset is comprehensive in its approach resulting from a period of extensive
development, and its use in many different application areas’™*. In thiswork, we illustrate the
formation of a predictive trace file from PACE when using information from an application
code (using a code segment taken from a Financial Option code), combined with predicted
time costs on the target platform.

Workload Descriptions

Underlying the PACE toolset is a performance language, CHIP’S (Characterisation
Instrumentation for Performance Prediction of Parallel Systems)", which provides the
necessary syntax and semantics to support workload descriptions for parallel software. This
includes: computational control flow information, resource usage information, mapping and
communication information amongst others. The core components of PACE is shown in
Figure 2.

binary executable

Application ' User Defined Model
Layer ‘ :
- Evaluation Engine
Parallel Compilation
Template Layer, | Hardware Models |
CHIP3S Script 1
'Hardware , , , Hardware|
| Model1 |~ Modeln |
Pre-defined

hardware models

Figure 2. The core components of the PACE tool set.



The compilation of the CHIP’S performance scripts results in output binaries which can
be linked to an evaluation engine along with hardware models for the target system. The
evauation engine combines the workload descriptions with the appropriate platform
performance characteristics (encapsulated in the hardware models) to produce performance
predictions (see below).

The hardware models for a specific system is a combination of: measurements (e.g.
micro-benchmark results), models (e.g. datistical, and anaytical), and hardware
specifications. The hardware components of a system can be modelled at different levels of
abstractions depending on the accuracy of predictions required. Models that represent a low-
level of abstraction typically provide highly accurate predictions but require detailed
workload information and result with long evaluation times.

The workload definitions in CHIP’S are organised into two layers: an application layer,
and a parale template layer. The former includes the workload descriptions for the
computational parts of the application while the latter includes descriptions on how the
resources of the systems are to be utilised and will interact. CHIP’S is dedicated to provide
the necessary syntax to support these descriptions. In order to illustrate these descriptions, a
code segment taken from the Alternating Direction Implicit (ADI) solution to a Partia
Differential Equation, as shown in Figure 3 will be used. Thisiswritten in an SPMD (Single
Program multiple data) style parallelism using the PV M message passing interface. Note that
the code in Figure 3 is performed on al nodes in the system, and contains communication
dependencies between nodes.

pvmrecv (tids[Mv_ID-1], 30);
pvm_upkf | oat (&d[l][lWMNJ 1], 1, 1);

for (1 ;] <= MY_SIZE; j++) {
( (J '>=2) & (] 1= S81ZEJ) ) {
fact = al/b[ 1{' o
dli][jl ‘dJ[I] 11 - fact*d[i][j-1];

}

pvm_ini tsend (PvnDat aRaw);
pvm pkfloat (&d[i][Mr_ MAX J

; 1, 1);
pvmsend (tids[M_ID+I], 30

Figure 3. Example C code taken from a Partial Differential Equation solution for a Financial Option.

The CHIP’S description for the computational part of the ADI code is shown in Figure 4.
The computational control flow, and associated operations, are described in the application
layer with the use of cflow procedures. These are similar to the procedures in the source code
but encapsulate the control flow of the application. Each statement in this script is associated
with a Processor Resource Usage Vector (PRUV) indicated by the brackets < ... > that
represent the operations in the original source code. In this example the operation count is
done in terms of input C language operations (clc) with each operation indicated by a four
character code. Control flow statements include: conput e, | oop, and case (conditional
execution statements). Note that the case statement has a probability of executing the branch.

proc cflow TxElim nate {
loop ( <is clc, LFOR CML, INLL> M_SIZE) {
conpute < is clc, 2*CM.L, ANDL>;
case ( <is clc, IFBR»)
0.9: conpute <is clc, ARFl, 3*ARF2, DFSL, 2*TFSL, M-SL, AFSL>;

}
}

Figure 4. An example computational description in CHIP’S contained in the application layer.
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The parale template layer makes reference to the resources used in the system to
execute the application. The term device is used to refer to the use of any hardware, or
software, resources such as hardware devices (CPU, interconnection network, 1/0) and
message passing libraries (e.g. packing, initialisation). A CHIP®S parallel template is shown
in Figure 5 which represents the structure of the original ADI source code in Figure 3. In each
st ep statement, adevice is specified, e.g. cpu, pvnr ecv (asynchronous receive using PV M)
etc. The parameters to each step are specified using the conf dev statement. For example, in
a communication receive and send, the parameters indicate the source and destination
processors respectively. It should be noted that the parameter for the cpu step, is the value
predicted from the TxElimate function as defined in the application layer (Figure 4).

step pvnrecv

step pvrmunpack on ny_id
step cpu on ny_id

step pvnminitsend on ny_id
step pvnpack on ny_id
step pvnsend

confdev ny_id - 1, ny_id; }
confdev 1, PVM FLOAT; }
confdev TxElimnate; }
confdev PVM Dat aRaw;, }
confdev 1, PVM FLOAT; }
confdev ny_id, nmy_id + 1; }

Pt e e Ve e

Figure5. An example parallel template description in CHIP'S,
Model Evaluation

The process of evaluating a PACE model, using the CHIP’S performance scripts, and
producing performance predictions is undertaken by the evaluation engine detailed in
Figure 6. Initially the application layer is evaluated to produce predicted computational
workload information. These are then used in the parallel template step cpu devices

The individual call to specific devices, and their associated parameters, are passed into
the evaluation engine. A dispatcher distributes input, from the workload descriptions, to an
event handler and then to the necessary individual hardware models. The event handler is
responsible for the construction of an event list for each processor in the system. Although the
events can be resolved by the device involved in the step statement, the time spent using the
device is till unknown. However, each individual hardware model can produce a time
prediction of an event based on its parameters. The resultant prediction is recorded in the
event list. When all device requests have been handled, the evaluation engine processes the
event list to produce an overall performance estimate for the execution time of the
application.
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o 7&;;,};;{,},0 Evaluation Engine
PRUV ‘ ‘ ‘ : [ ‘
,,,,,,,,,,,,,,,,,,,, step || istep | Levents| |
r ] | . ! | Event ! ! Event !
Parallel _> Dispatcher iy Processing —p List 3 e
Template | confdev| | | : | | |
Layer | : = : ‘ :
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comm
model
o

hardware madel

Figure 6. The evaluation process to produce a predictive trace within PACE
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The processing of the event list is a two stage operation. The first is in the construction
of the events, and the second is to resolve any ordering dependencies taking into account any
contention factors. For example, in predicting the time for a communication, the traffic on the
inter-connection network should be known to calculate channel contention. In addition,
messages obviously cannot be received until after they are sent. The exception to this type of
evaluation is a computational event that involves a single CPU device - this can be predicted
in the first stage of evaluation since it does not require interaction with any other events.

Predictive Traces

The ability of PACE to produce predictive traces derives directly from the event list
formed during the model evaluation. An example event list produced by the evaluation engine
isillustrated in Figure 7 using a space-time representation. The communication dependencies
between three processors, using the ADI code segment, are shown. The events, illustrated
graphically, correspond to the underlying records in the tracefile.

The predictive events produced by the evaluation engine are PACE specific in
comparison to genera traced events. However, a mapping of these to events to a standard
trace file format, recognised by an external monitoring environment, is a straight forward
process. Example trace events supported by PACE are shown in Table 1. This is an
extendible list in which events can be used to represent any information contained within the
PACE model. The traces are produced by scanning each processor event list sequentially.
During this process the local events are mapped to output trace events and formatted in a
standard trace format. The output trace file is sorted according to the event time-stamps.

Tasks

my_id-1 | B\ |

my_id a B\ |
my_id+1 _:-j\

[l computation [ Jidle [ ]send [ ]recv

Figure 7. Example event list produced by the evaluation engine

Table 1. Example predictive events used within the PACE Evaluation Engine.

Event (start) Event (end) Description

SendBegi n Sendend Surrounds an asynchronous message send.

RecvBegi n RecvEnd Surrounds an message being received.

RecvBl ockBegi n RecvBl ockEnd A pncked receive (i.e. processor waiting).

ConpBegi n ConpEnd A computation event

Overheadbegin  Over headEnd Computation events associated with parallel overheads

TaskBegi n TaskEnd Surrounds a computational subtask on each processor.
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VISUALISING PREDICTIVE TRACES

PACE can produce overall predictions of execution time, and scaling behaviour, of
application code. An example of which is shown in Figure 8 for a monte-carlo simulation
code. However, the significant feature of PACE in the generation of a predictive trace allows
insight into the time estimation. The predictive traces produced by PACE can be output in
one of two formats suitable for use with either the Paragraph’, or the Pablo environment®.

They are aso quite different in their approach in forming a performance anaysis
environment. For example, one of Paragraph’s main use is to effectively ‘replay’ a trace file
using a number of built-in performance displays which extract appropriate events directly.
This is in comparison to Pablo which requires an analysis session to be constructed in a
graphical environment first, followed by the use of a number of built-in displays. In this
graphical environment, the user effectively relates events from the input trace file to the
different displays available.

The two monitoring environments quite different trace file formats. Paragraph uses the
PICL" (Portable Instrumented Communication Library) format in which each line in the trace
file represents an individual event using a pre-specific data coding, thus allowing only certain
events to be recorded. Pablo uses the SDDF (Self Defining Data Format) which enables the
format of each event to be specified in the trace file along with the actual list of events. This
is a more flexible approach, allowing system/application specific events to be defined and
recorded, but requires trace-file specific construction of a performance analysis session.
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Figure 8. Predicted scaling behaviour of a monte-carlo simulation code as output by PACE

In order to illustrate the use of the predictive trace output from PACE, the core of a
financial option code is used, a segment of which was shown in Figure 4. This code requires
the solution of a partial differential equation, using the Alternating Direction Implicit (ADI)
solution on a dense data grid. The resulting parallel code is a data decomposition of the data
grid, but results in much communication between processing nodes.

This code was modelled within PACE, resulting in a binary which, when executed
produced performance predictions for the application given a set of input parameters (data
grid sizes, and also processor nodes in the system). The example here considered a hardware
platform of a cluster of 6 SUN ULTRA workstations. A predictive trace (in either the PICL
or SDDF format) can be output from this executable on the setting of an input flag. The
overall performance predictions were validated with application run-times, and were found to
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be within an error bound of 15%. The performance predictions were obtained in a matter of
seconds from the binary executable. The speed of evaluation is a significant feature of PACE,
not described in detail here, but has been used for on-the-fly performance prediction’.
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Figure 9. Example of a prediction trace analysed using space-time diagrams (from Paragraph).

Figure 9 shows three example views, derived from Paragraph, illustrating system
activity as a function of time, for part of the predicted behaviour of the Financial code. The
top chart indicates processor status, either busy, idle, or involved in parallel overheads. The
second chart shows the computation/communication activities, colour coded according to
message volumes. The final chart indicates the traffic in the system - an effective summation
across processors from the middle chart. It can be seen, that there are many regions of both
idle and overhead time which may be significant in under-achieving performance. These
factors, once identified, could potentially be refined prior to application implementation.

Figure 10 shows an example predictive trace analysis session within Pablo. In the
background, an analysis tree refers to an input trace file (at its root node) and, using data
mani pulation nodes, results in a number of separate displays (leavesin the tree). Four types of
displays are shown producing summary information on various aspects of the expected
communication behaviour of the Financial code. For example, the display in the lower left
indicates the communication between source and destination nodes in the system (using
contours to represent traffic), and the middle display shows the same information displayed
using ‘bubbles’ the size and colour of which indicates traffic.
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Figure 10. Example of a prediction trace analysed using the Pablo performance analysis environment.

The use of a monitoring environment is not just limited to the analysis of a single trace.
Indeed, current work is underway on the identification, and quantification, of changes in
performance between one trace and another’. Such perturbations in performance may be due
to variability in system use, or possibly due to changes in underlying system software (e.g.
message passing libraries). The use of PACE can foresee changes in achieved performance,
when such system parameters change, but in a predictive sense.

SUMMARY

The development of high performance application code is driven by the need of
achieving rapid execution times. At a certain point in the development of the application, the
performance issues become the predominant concern. However, typicaly these concerns are
left until after the porting and implementation of the code, with performance anaysis relying
solely on analysis of executions. Performance analysis is not restricted to this post-
implementation analysis, but can (and should) be used during the development of the
application using prediction studies. The PACE toolset, as presented here, provides facilities
for performance prediction studies to take place. Such studies can aid the implementation and
porting of application code by choosing underlying numerical techniques, or guiding the
choice of parallelisation, based on expected performance that will be achieved when finally
executing the application on the target platform.

A significant feature of PACE is in the provision of a predictive trace output. This, a
trace file that contains a list of events that represents the expected behaviour of the system at
run-time. The predictive trace mimics the generation of an execution trace (one which is
collected at run-time), and can be manipulated in exactly the same way. Thus, available
monitoring environments, such as Paragraph and Pablo (familiar to many HPC users) can be

10



utilised to analyse and explore the expected performance of the application code. The use of
PACE in outputting predictive traces has been illustrated on a financial option code in this
work. The use of the predictive traces can significantly increase efficiency in fina
implementations when used during the development of application code.
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