Scalable Resour ce Management In
High-Perfor mance Computers

Cluster 2002 - Chicago, | L

Eitan Frachtenberg, Fabrizio Petrini, Juan Fernandez, and Salvador Coll
CCS-3 Modeling, Algorithms, and Informatics Group
Computer and Computational Sciences (CCS) Division
Los Alamos National Laboratory
{eitanf, fabrizio,juanf,scoll}@ anl. gov

S, |

> Los Alamos

Scalable Resource Management in High-Performance Computers — p.1/22



Cluster Resource M anagemen

-

Clusters and other loosely-coupled systems are becoming
ubiquitous and larger
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Cluster Resource M anagemen

-

In the desktop/workstation world:

® Job-launching time is typically very short (< second)
® Timeshared machine enables multitasking and interactivity

® Easy to use and quite reliable
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Cluster Resource M anagemen

-

In the desktop/workstation world:

® Job-launching time is typically very short (< second)
® Timeshared machine enables multitasking and interactivity

® Easy to use and quite reliable

In the cluster world:

® Jobs run one a time or gang-scheduled with large quanta

°

Job-launching time is arbitrarily long (batch) or many seconds
(gang-scheduling)

Reliability and ease-of-use do not scale

9o
\— ® State-of-the-art RMs are typically implemented using Ethernet /

%TCP—IP, using non-scalable algorithms for control messages
» Los Alamos
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The STORM Approach

-

Design goals:

1. Scalable, high-performance mechanisms for RM, leveraging modern
interconnect capabilities

2. Support most current and future scheduling algorithms (FCFS, GS,
SB, BCS, FCS, ..)

3. Platform for studying system-level fault tolerance
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The STORM Approach

-

Design goals:

1. Scalable, high-performance mechanisms for RM, leveraging modern
interconnect capabilities

2. Support most current and future scheduling algorithms (FCFS, GS,
SB, BCS, FCS, ..)

3. Platform for studying system-level fault tolerance

Main differences from standard RMs:

1. Important parts of the RM run on the NIC
2. STORM uses scalable HW multicast mechanism (constant time)
3. STORM uses pipelined 10-bypass protocol

4% File transfer overlaps disk 1/0 and multicasts J
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Scalable Resource Management in High-Performance Computers — p.4/22



STORM Layers

STORM functions

Heartbeat, file txfr, termination detection

Helper functions

Flow control, queue management

STORM mechanisms

XFER- AND- SI GNAL
TEST- EVENT
COMPARE- AND- VRl TE

Network primitives

Remote DMA, signaling, event testing
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STORM Architecture
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® Set of layered, modular deemons (per node and per machine)

® Lightweight, and Loosely-coupled, using the communication
primitives

® “Pluggable” scheduling algorithms: FCFS, GS, SB, Local, FCS... J
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-

Perfor mance Testing

The "Wolverine’ cluster at LANL (listed 134th at top500):

64-node AlphaServer ES40, running RH Linux 7.1
4 Alpha EV68 CPUs (833M Hz), 8GB RAM per node
Two-rail Quadrics interconnect

© o o 0

Files are placed in local RAM disks to isolate RM
performance

A |
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Job Launching

-

Job launching time becomes an issue when:

# Machine size grows (usual methods scale poorly)
# Debugging or running short/interactive jobs

Job Launching Breakdown

Reading binary and data files
disseminating to compute nodes (NFS, tree, ...)
Executing program

© o o o

Notifying job control of termination

.y
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Job L aunching Perfor mance
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Per for mance Comparison
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Multiprogramming

-

Suspending a parallel job in the machine and starting
another can be useful for:

# Preempting a job for a higher-priority job and restarting
later

# Improving system responsiveness and resource
utilization through gang-scheduling

# Running more than one interactive application (e.g. viz.)

Gang-Scheduling isn’t used much, partly due to the
performance penalty of context switching.

The combination of STORM’s mechanisms and modern
HW can make the performance hit negligible.

P -
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Context Switch Over head
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Context Switch Overhead Comparg

-

Comparison of minimum feasible scheduling guantum with
RMS and SCore-D:

RM quantum (ms) observed overhead

RMS | 30,000 (15 nodes) 1.8% slowdown
SCore-D | 100 (64 nodes) 2% slowdown
STORM 2 (64 nodes) no observable slowdown
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Futurework

-

1. Load balancing jobs with different requirements
2. Improve resource utilization

3. Making systems deterministic and debuggable
4. System-level transparent fault tolerance
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Conclusion

Efficient combination of SW methods with modern
Interconnect HW can offer extremely scalable resource
management

Relatively simple to implement (10K-30K lines of C
code)

High-performance job launching and multiprogramming

Global process coordination is as efficient in a large
cluster as in a small cluster or even a desktop machine

One step ahead in usabillity for large-scale machines

For more information:
http://www.ccs3.lanl _gov/ fabrizio
Lor e-mail ettanf@lanl _gov J
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1/O bypass mechanism in STOR
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Portability Issues

-

Network COVPARE- AND- WRI TE (us) XFER- AND- SI GNAL (M B/SI)
Gigabit Ethernet 46lo9 1 Not available
Myrinet 20109 T lon
Infiniband 20logn Not available
QsSNET < 10 > 150n
BlueGene/L < 2 700n
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Scalability M odel
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Context-switch scalability
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Launch Timeson a L oaded Syst

-
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Jduadricsinterconnect scalability -

-

Hardware Barrier Latency (Pittsburgh Supercomputing Center)
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Comparison References

-

STORM compared to:

GLUnNIx [Ghormley 98]
BProc [Hendriks 02]
SCore-D [Hori 98]
Cplant [Brightwell 99]
RMS [Frachtenberg 01]
NFS / rsh (PBS)
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