Scalable Resour ce Management In
High-Perfor mance Computers

Cluster 2002 - Chicago, | L

Eitan Frachtenberg, Fabrizio Petrini, Juan Fernandez, and Salvador Coll
CCS-3 Modeling, Algorithms, and Informatics Group
Computer and Computational Sciences (CCS) Division
Los Alamos National Laboratory
{eitanf, fabrizio,juanf,scoll}@ anl. gov

S, |

> Los Alamos

Scalable Resource Management in High-Performance Computers — p.1/22

Cluster Resource M anagemen

-

Clusters and other loosely-coupled systems are becoming
ubiquitous and larger

T10PS00

Architectures

Cluster - NOW

A o> & o oF b b oo o :;'\‘&q.‘k D P DRSS DS

& 4& 'Q" 4&
o l_os Al W WFy

Scalable Resource Management in High-Performance Computers — p.2/22

Cluster Resource M anagemen

-

In the desktop/workstation world:

® Job-launching time is typically very short (< second)
® Timeshared machine enables multitasking and interactivity

® Easy to use and quite reliable

S, |

> Los Alamos

Scalable Resource Management in High-Performance Computers — p.3/22

Cluster Resource M anagemen

-

In the desktop/workstation world:

® Job-launching time is typically very short (< second)
® Timeshared machine enables multitasking and interactivity

® Easy to use and quite reliable

In the cluster world:

® Jobs run one a time or gang-scheduled with large quanta

°

Job-launching time is arbitrarily long (batch) or many seconds
(gang-scheduling)

Reliability and ease-of-use do not scale

9o
\— ® State-of-the-art RMs are typically implemented using Ethernet /

%TCP—IP, using non-scalable algorithms for control messages
» Los Alamos

Scalable Resource Management in High-Performance Computers — p.3/22

The STORM Approach

-

Design goals:

1. Scalable, high-performance mechanisms for RM, leveraging modern
interconnect capabilities

2. Support most current and future scheduling algorithms (FCFS, GS,
SB, BCS, FCS, ..)

3. Platform for studying system-level fault tolerance

S, |

» Los Alamos

Scalable Resource Management in High-Performance Computers — p.4/22

The STORM Approach

-

Design goals:

1. Scalable, high-performance mechanisms for RM, leveraging modern
interconnect capabilities

2. Support most current and future scheduling algorithms (FCFS, GS,
SB, BCS, FCS, ..)

3. Platform for studying system-level fault tolerance

Main differences from standard RMs:

1. Important parts of the RM run on the NIC
2. STORM uses scalable HW multicast mechanism (constant time)
3. STORM uses pipelined 10-bypass protocol

4% File transfer overlaps disk 1/0 and multicasts J
» Los Alamos

Scalable Resource Management in High-Performance Computers — p.4/22

STORM Layers

STORM functions

Heartbeat, file txfr, termination detection

Helper functions

Flow control, queue management

STORM mechanisms

XFER- AND- SI GNAL
TEST- EVENT
COMPARE- AND- VRl TE

Network primitives

Remote DMA, signaling, event testing

s Los Alamos

|

Scalable Resource Management in High-Performance Computers — p.5/22

STORM Architecture

Nod Nod Node2 Nod
AP \: AP \: AP \: AP £
5 < 4 4 4 4
1 PL] PL] PL PL
. Q | 3 | 3 | 3 | 3
2 2 L2 2 2
,,,,,,,,,,,, O s N A
NETWORK

® Set of layered, modular deemons (per node and per machine)

® Lightweight, and Loosely-coupled, using the communication
primitives

® “Pluggable” scheduling algorithms: FCFS, GS, SB, Local, FCS... J

.
—
» Los Alamos

Scalable Resource Management in High-Performance Computers — p.6/22

-

Perfor mance Testing

The "Wolverine’ cluster at LANL (listed 134th at top500):

64-node AlphaServer ES40, running RH Linux 7.1
4 Alpha EV68 CPUs (833M Hz), 8GB RAM per node
Two-rail Quadrics interconnect

© o o 0

Files are placed in local RAM disks to isolate RM
performance

A |

» Los Alamos

Scalable Resource Management in High-Performance Computers — p.7/22

Job Launching

-

Job launching time becomes an issue when:

Machine size grows (usual methods scale poorly)
Debugging or running short/interactive jobs

Job Launching Breakdown

Reading binary and data files
disseminating to compute nodes (NFS, tree, ...)
Executing program

© o o o

Notifying job control of termination

.y

—
» Los Alamos

|

Scalable Resource Management in High-Performance Computers — p.8/22

Job L aunching Perfor mance

150

I 0 Execute4 MB| |l ExecuteSMB| | Execute 12 MB i
125 B Send4MB B Send 8MB H Send12 MB |

Time (ms)
o 5
B = S B
I I I

N

o1
' I
I

o

4812 4812 4812 4812 4812 4812 4812 4812 4812
1 2 4 8 16 32 64 128 256

Processor s

S, |

> Los Alamos

Scalable Resource Management in High-Performance Computers — p.9/22

Per for mance Comparison

Time (9)

o|lo|=n|=

o8]

)]

—— STORM (modeled; see text)

r sh (measured)

rsh (t=0.934n + 1.266)
RMS (measured)

RMS (t = 0.077n + 1.092)
GLUnix (measured)

GLUnix (t =0.012n + 0.228)

Cplant (measured)

Cplant (t =1.3791gn + 6.177)
BProc, measured

BProc, (t =0.4131gn - 0.084)
STORM (measured)

2 8 32

|
4 16 64

128 512 2K
Nodes

256 1K 4K 16K
8K

|

Scalable Resource Management in High-Performance Computers — p.10/22

Multiprogramming

-

Suspending a parallel job in the machine and starting
another can be useful for:

Preempting a job for a higher-priority job and restarting
later

Improving system responsiveness and resource
utilization through gang-scheduling

Running more than one interactive application (e.g. viz.)

Gang-Scheduling isn’t used much, partly due to the
performance penalty of context switching.

The combination of STORM’s mechanisms and modern
HW can make the performance hit negligible.

P -

s Los Alamos

Scalable Resource Management in High-Performance Computers — p.11/22

Context Switch Over head

/0
@ 6oL cco——0———0 o -
i : : :
50— I . | .
= _ | eSS N
-GIL) 40+ i (2ms, 49s) i i i -
£ : : ' '
S 30- : : ' ' -
c I : : | |
- l l l l
= 20F i i | | —
ol I . . Sweep3D (MPL=1)
le) 10l =81 Sweep3D (MPL=2) |
— i i G—© Synthetic computation (MPL=2)
O 1 1 111111 : 1 1 L1111 : 1 1 L1111 I 1111 : 1 1 111111
0.1 1 10 100 1000 10000

L A Time quantum (ms) J

» Los Alamos

Scalable Resource Management in High-Performance Computers — p.12/22

Context Switch Overhead Comparg

-

Comparison of minimum feasible scheduling guantum with
RMS and SCore-D:

RM quantum (ms) observed overhead

RMS | 30,000 (15 nodes) 1.8% slowdown
SCore-D | 100 (64 nodes) 2% slowdown
STORM 2 (64 nodes) no observable slowdown

S, |

» Los Alamos

Scalable Resource Management in High-Performance Computers — p.13/22

Futurework

-

1. Load balancing jobs with different requirements
2. Improve resource utilization

3. Making systems deterministic and debuggable
4. System-level transparent fault tolerance

S, |

» Los Alamos

Scalable Resource Management in High-Performance Computers — p.14/22

9

Conclusion

Efficient combination of SW methods with modern
Interconnect HW can offer extremely scalable resource
management

Relatively simple to implement (10K-30K lines of C
code)

High-performance job launching and multiprogramming

Global process coordination is as efficient in a large
cluster as in a small cluster or even a desktop machine

One step ahead in usabillity for large-scale machines

For more information:
http://www.ccs3.lanl _gov/ fabrizio
Lor e-mail ettanf@lanl _gov J

/\
» Los Alamos

Scalable Resource Management in High-Performance Computers — p.15/22

1/O bypass mechanism in STOR

MM Node; Node i
kernel_open kernel_open kernel_open
kernel_read+ kernel_writet+ kernel_write+
kernel_close kernel_close kernel_close
Read Trap Write Trap Write Trap
| w~ic NIC NIC
Bcast Event A Event A
Comm |4 {BinS| Comm|_ === ---=BinR| Comm} === ---=BinR|
Buffer Buffer v Buffer
E I i
Z | HW Bcast 3
NETWORK

> Los Alamos

Scalable Resource Management in High-Performance Computers — p.16/22

Portability Issues

-

Network COVPARE- AND- WRI TE (us) XFER- AND- SI GNAL (M B/SI)
Gigabit Ethernet 46lo9 1 Not available
Myrinet 20109 T lon
Infiniband 20logn Not available
QsSNET < 10 > 150n
BlueGene/L < 2 700n

S, |

» Los Alamos

Scalable Resource Management in High-Performance Computers — p.17/22

Scalability M odel

Comm. éwait received Await received |Await received| !

Master
: 108 us : 2.3 ms : 3.8 ms/iteration : 5 us : 3,1 ms : 5 us : 74 us :
, /(218 MB/s), (131 MB/s) , , (162 MB/s) , ,
I I I I I I I I
i + 4 1 1 1
File Open file [Read chun! ead chun [[[Close file
[Open file Read chunig [Read chun | | Close fite
Comm. |gend file info : ! | Send chunk l—'\ ISend chun! ! ! :
Flow Await sent ! Await space | Await sent |Await space Await sent | Await written !
control 1 X
| l | | | ‘ | l
I I I I \ I I I I
file size/chunk size-1 iterations
Slaves

! 108 us ! 2.8 ms/iteration ! 2.8 ms 74us !

: : (181 MB/s) : (181 MB/s) :

I I I I

File * |Open file y [Write chun * |Write chunk| Close ﬁlel

I

I

I

file size/chunk size-1 iterations

> Los Alamos

Scalable Resource Management in High-Performance Computers — p.18/22

Context-switch scalability

0 1000]
N’ C
—
al
=
|- 100 — i
<)) -
£
-
S 1oL SWEEP3D, MPL=1 _
= - [3—£1 SWEEP3D, MPL=2
c_(j - @—® Synthetic computation, MPL=1
"5 (3= Synthetic computation, MPL=2
—
1 | | | | | | |
— i Nodes o

» Los Alamos

Scalable Resource Management in High-Performance Computers — p.19/22

Launch Timeson a L oaded Syst

-

2000

1800/

H Il Send (unloaded)

[0 Execute (unloaded)

B Execute (CPU loaded) || B Execute (network loaded) |
B Send (CPU loaded) B Send (network loaded)

1600
14001
1200}
1000}

800[
600
400}
200

Time (ms)

.

» Los Alamos

UCN UCN UCN UCN UCN UCN UCN UCN UCN

1 2 4

8 16 32 64 128 256
Processor s

|

Scalable Resource Management in High-Performance Computers — p.20/22

Jduadricsinterconnect scalability -

-

Hardware Barrier Latency (Pittsburgh Supercomputing Center)

Latency (us)

4 | | | | | | | |
2 4 8 16 32 64 128 256 512 1024
Nodes

|

Scalable Resource Management in High-Performance Computers — p.21/22

Comparison References

-

STORM compared to:

GLUnNIx [Ghormley 98]
BProc [Hendriks 02]
SCore-D [Hori 98]
Cplant [Brightwell 99]
RMS [Frachtenberg 01]
NFS / rsh (PBS)

© o o o o 0

S, |

» Los Alamos

Scalable Resource Management in High-Performance Computers — p.22/22

	Cluster Resource Management
	Cluster Resource Management
	The STORM Approach
	STORM Layers
	STORM Architecture
	Performance Testing
	Job Launching
	Job Launching Performance
	Performance Comparison
	Multiprogramming
	Context Switch Overhead
	Context Switch Overhead Comparison
	Future work
	Conclusion
	I/O bypass mechanism in STORM
	Portability Issues
	Scalability Model
	Context-switch scalability
	Launch Times on a Loaded System
	Quadrics interconnect scalability - barrier
	Comparison References

