.

o Los Alamos

NATIONAL LABORATORY

Monitoring and Debugging Parallel Software
with BCS-MPI on Large-Scale Clusters

Juan Fernandez?!, Fabrizio Petrini?, Eitan Frachtenberg?

1Grupo de Arquitectura y Computacién Paralela (GACOP) 2performance and Architecture Lab (PAL)
Dpto. Ingenieria 'y Tecnologia de Computadores CCS-3 Modeling, Algorithms and Informatics
Universidad de Murcia, 30071 Murcia, SPAIN Los Alamos National Laboratory, NM 87545, USA

URL: URL:

email:juanf@um.es

Motivation

_N Clusters have been the most successful player in
high-performance computing in the last decade

oS \ Independent
/ I' e

Nodes / OSs
glued together by
System Software:

Parallel Development
and Debugging Tools
Resource Management
Communications
Parallel File System
Fault Tolerance

Paralell Apps:
Message passing (MPI)

HARDWARE = Independent Nodes + High-speed Network
SOFTWARE = Commodity OS + System Software + Parallel Apps

Motivation

_NEver-increasing demand for computing capability
IS driving the construction of ever-larger clusters

BlueGene/L DD2

Columbia Earth Simulator
32768 Processors 10160 Processors 5120 Processors

System Software and Parallel Applications
grow in complexity as cluster sizes increase

Motivation

_NDeveloping and maintaining parallel software is

far more complicated than sequential software
® Commodity hardware/OSs not designed for clusters
— Hardware conceived for loosely-coupled environments
— Local OSs lack global awareness of parallel applications
® Complex global state of MPI apps

® MPI apps rely on services provided by system software

® Non-deterministic behavior inherent to clusters (local OS
scheduling) and parallel applications (MP1_ANY_ SOURCE)

Development of Parallel Software is
a very time-and resource-consuming task

Introduction

_NMonitoring and debugging parallel software:
® Compile-time and run-time techniques

— Additional software that somehow interacts with MPI applications
to either gather data or perform checks of different nature

— System Software is often ignored and assumed to be reliable
® Buffered CoScheduled MPI (BCS-MPI)
— Based on a methodology to reduce system software complexity:

Q Small set of efficient and scalable hardware-supported primitives
Q Global control and coordination of all system activities

— BCS-MPI imposes an execution model where processes and
communications are scheduled at a fine granularity

Monitoring and Debugging System (MDS) which
integrates with the BCS-MPI runtime system

Outline

_IMotivation
_lIntroduction

_IDesign and Implementation of BCS-MPI
_IMonitoring and Debugging System (MDS)

_IConcluding remarks

BCS-MPI

_IReal-time communication scheduling

Global Strobe
(time slice starts)

Global
Synchronization

Global
Synchronization

Global Strobe
(time slice ends)

Time Slice (hundreds of us)
A

BCS-MPI

_|Implementation in Network Interface Card

® Application processes interact with NIC threads
— MPI primitive = Descriptor posted to the NIC
— Communications are buffered
® Cooperative threads running in the NIC
— Synchronize
— Partial exchange of control information
— Schedule communications
— Perform real transmissions and reduce computations
® Computation/communication completely overlapped
— Incoming messages do not generate interrupts

— User processes do not need to poll for communication
completion

BCS-MPI

Isend/Irecv
Time slice i+2

_INon-blocking primitives: MPI

Message
Transmission
Time slice i

Computation

Time slice i+1

3
Global
Message
Scheduling
Time slicei

Time slice i

Computation

Computation

Computation

BCS-MPI

_IGlobal Synchronization/Scheduling Protocol

® Global Message Scheduling Phase

— Microphases: Descriptor Exchange + Message Scheduling
® Message Transmission Phase:
— Microphases: Point-to-point, Barrier and Broadcast, Reduce

Time slice |
- e
MIC
' Slobal : :
; : Message :
| Message | P :
: Schednlin , Tmansmission :
| 5 | Phase !
: Phase | :
| I N 2 0O 000]
Crescriptor Tlemage Poim-to-point Broadcast Reduce
Exchange Scheduling TWicroPhaz= and B arder TWlicm Phaz=
Wlic oaf haze Tvlic ooF haze [FTW1] TWicroPhaz= IR

[CET] T¥1ETe] HBE]

Outline

_IMotivation
_lIntroduction

_1Design and Implementation of BCS-MPI
_IMonitoring and Debugging System (MDS)

_IConcluding remarks

_IMonitoring and Debugging System (MDS)
® A posteriori data analysis not only for MPI apps
but also for the BCS-MPI runtime system itself
® MDS is logically divided into two main components
— Main MDS (MMDS)
QProcess scheduling and communication primitives

— Elan MDS (EMDS)
Q Communication pattern of MPI applications
QBehavior of the BCS-MPI runtime system itself

— Both modules can be enabled/disabled by just setting
and env variable without compiling or linking the code

Main MDS Implementation

_IMMDS profiles the BCS-MPI API

® Comp granularity/comm overhead distribution

® BCS-MPI primitives usage (minimum / maximum /
average latency, latency and size distributions)

® Counters and distribution arrays in main memory

Time slice | Time slice i+1 Time slicei+2 Time slice i+3 Time slice i+4 Time slice i+5
-l - - -} - -

1

]

: Computation i Com putation Idi=
| I
| 1
| 11
| 11
]
1

I [

Idle

"' Global

Message |

l
| |
| |
| |
| |
| |
| |
| Trarsmisskon |
1
|
|
|
|
|
[

|
|
|
|
I
Message N
Scheduling | N
Timeshea 1 Time dicel T
|
|
|
|
|
1

!
I |
I |
| |
[[
| |
] I
[[
I |
| |
| |
I |
| |
[|
I |
| |
| |

Il
I
11 |
i 1)
| I | 11
| I | Il
I Il I 11
| I | 11
dle | Computation | | Computation Idle | Idle 11 Computation
[1 E—
-
Communication e Computation : Communication o

Owverhead Granularity ' Cnierhead

Elan MDS Implementation

_IEMDS profiles the NIC threads

® Global metrics on the sync/scheduling protocol

® Local metrics regarding process and comm scheduling
® Debugging metrics (time to complete specific routines)
® Counters and distribution arrays in NIC memory

Time slice i Time slice i+1
-} o o
NIC | I | |
Global Message Global Message
Message Transmission Message Transmission
Scheduling Phase Scheduling Phase
Phase Phase
I I — | [I
Descriptor Message Point-to-point Broadcast Redu ce Descriptor Mes=age Pointto-point Broadcast Reduce
Exdchange Scheduling MicroPhase and Barrier MicroPhase Exchange Scheduling MicoPhase an d Barrier MicraPhase
MicroPhase MicroPhase P} MicraPhase (RA) MicroPhase MicoPhase (PMI MicroPhase (R}
(DEM] S (EEM) [DEM) {MSM) (BEM)
l—
GTDEM GTMSHN
] -
GTTS

b

GETTS

_IExperimental Setup

Characteristic Wolverine Cluster

Nodes 64 AlphaServer ES40
CPUs/Node 4 x 833MHz EV68
Memory/Node 8 GB

Network Cards QM-400 Elan3

OS RH 7.1 + QsNet kernel
Software Qsnetlibs v1.5.0-0

_lAnalyzing the BCS-MPI runtime system
® Microbenchmark (MPI_Barrier in a loop)

Number of scheduled collectives in
the MSN microphase (NCOLLMSN)

Time (microseconds)

0
7500 &000 &500 9000 9500 10000 10500 11000 1800 12000 12500
Time Slice Number

0.5 -

Global Elapsed Time from
previous Time Slice (GETTS)

Number of scheduled collectives inthe MSN microphase

0 1 i 'l ' L L 1 1 1
10000 10050 10700 10150 10200 10250 10300 10350 10400 10450 10500
Time Slice Number

_lAnalyzing a real MPI application

® SAGE spends most comm time in three MPI primitives
® Top-down approach to debug application

Min Max Total Average

Primitive (ms) (ms) (ms) Count (ms)

MPT_Tsend 0.588 | 16.576 | 21026 | 4396 4783

MPTI_Trecv 0.736 | 16.644 | 24280 | 5617 4.323

MPI_Allreduce | 0.366 | 24.753 | 18906 | 7025 2.691

_lOperational overhead incurred by the MDS

® MMDS overhead < 0.5%
® EMDS overhead slightly higher
— Small TLB and cache sizes in the Elan3 NIC

Input MDS MMDS MMDS EMDS EMDS

Deck Disabled Runtime Overhead Runtime Overhead

timing_h | 114.604s | 115.023s 0.36% 116.102s 1.31%

timing_c | 193.202s | 193.345s 0.07% 193.419s 0.11%

Negligible performance degradation!

_IMotivation
_lIntroduction

_1Design and Implementation of BCS-MPI
_IMonitoring and Debugging System (MDS)

_IConcluding remarks

Concluding Remarks

_NIBCS-MPI globally schedules all system activities in
deterministically reproducible, global steps

_HlLeveraging the BCS-MPI paralell execution model,
we have developed an innovative Monitoring and
Debugging System (MDS)

_IMDS can be used to monitor and debug not only
parallel MPI applications but the BCS-MPI runtime
system itself with negligible performance degradation

.

o Los Alamos

NATIONAL LABORATORY

Monitoring and Debugging Parallel Software
with BCS-MPI on Large-Scale Clusters

Juan Fernandez?!, Fabrizio Petrini?, Eitan Frachtenberg?

1Grupo de Arquitectura y Computacién Paralela (GACOP) 2performance and Architecture Lab (PAL)
Dpto. Ingenieria 'y Tecnologia de Computadores CCS-3 Modeling, Algorithms and Informatics
Universidad de Murcia, 30071 Murcia, SPAIN Los Alamos National Laboratory, NM 87545, USA

URL: URL:

email:juanf@um.es

