
 1/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SC|05 November 12-18, 2005, Seattle, Washington, USA
(c) 2005 ACM 1-59593-061-2/05/0011…$5.00

On the Feasibility of Optical Circuit Switching for
High Performance Computing Systems

Kevin J. Barker2, Alan Benner1, Ray Hoare3, Adolfy Hoisie2, Alex K. Jones3,4, Darren J. Kerbyson2,
Dan Li4, Rami Melhem4,3, Ram Rajamony1, Eugen Schenfeld1, Shuyi Shao4, Craig Stunkel1, Peter Walker1

1 IBM T.J. Watson Research Center
Yorktown Heights, NY 10598

eugen@us.ibm.com

2 Performance and Architecture Lab
Los Alamos National Laboratory

Los Alamos, NM 87545
djk@lanl.gov

3 Dept. of Electrical and Computer Eng.
4 Department of Computer Science

University of Pittsburgh
Pittsburgh, PA 15280
melhem@cs.pitt.edu

ABSTRACT
The interconnect plays a key role in both the cost and
performance of large-scale HPC systems. The cost of
future high-bandwidth electronic interconnects is
expected to increase due to expensive optical
transceivers needed between switches. We describe a
potentially cheaper and more power-efficient
approach to building high-performance interconnects.

Through empirical analysis of HPC applications, we
find that the bulk of inter-processor communication
(barring collectives) is bounded in degree and
changes very slowly or never. Thus we propose a
two-network interconnect: An Optical Circuit
Switching (OCS) network handling long-lived bulk
data transfers, using optical switches; and a secondary
lower-bandwidth Electronic Packet Switching (EPS)
network. An OCS could be significantly cheaper than
an all electronic network as it uses fewer optical
transceivers. Collectives and transient communication
packets traverse the electronic network.

We present compiler techniques and dynamic run-
time policies, using this two-network interconnect.
Simulation results show that our approach provides
high performance at low cost.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Circuit
switching networks and network communications. B.4.3
[Interconnections (Subsystems)] fiber optics.

General Terms
Design, Performance

Keywords
Optical circuit switching, Network design, High
Performance Computing, Performance Analysis.

1. INTRODUCTION
High performance computing systems are being built
out of ever-increasing numbers of processors. Blue
Gene/L [1], which is the current leader in the TOP-
500 supercomputer list as of June 2005, achieved that
spot with a system containing 65,536 processors. The
largest Blue Gene/L installation will be a 128K-
processor system at Lawrence Livermore National
Laboratory (LLNL) to be completed in 2005. Trends
in microprocessor speeds indicate that systems with
around 100K processors may be necessary in order to
achieve petascale performance. A key component of
these systems is the interconnect that connects
together the system processors. In this paper, we
examine a novel network structure with superior cost-
performance benefits which we believe can be utilized
in High Performance Computer systems: the Optical
Circuit Switching (OCS) network.
Today's high performance computing systems use
packet-switched networks to interconnect system
processors. Inter-processor messages get broken into
packets that are routed through network switches.
InfiniBand, QsNet, switched Ethernet, and Myrinet
networks are all examples of such interconnects. As
systems get larger, a scalable interconnect can
consume a disproportionately high portion of the
system cost when striving to meet the twin demands
of low-latency and high-bandwidth. The quest for
cheap, packet-switched, low-latency, high-bandwidth
networks to interconnect large numbers of processors
is indeed worthwhile. However, it is reasonable to ask
whether cheaper alternatives can be identified today
to fulfill the needs of large-scale applications.
By empirically observing the communication patterns
of a large number of high performance computing
applications (eleven are described in this work), we
find that two principles govern the bulk of the
communication. First, barring collectives, the number
of communicating partners for each computation

 2/

partition is bounded and typically small. Second, the
set of partners with which a partition communicates
either remains unchanged, or changes very slowly
through the course of the execution. That these
principles exist should not be surprising. Many high
performance computing applications solve physical
problems and model the problem domain using a
graph-based structure (regular or irregular).
Computation partitions communicate with partnering
partitions in the graph domain. When techniques such
as Adaptive Mesh Refinement (AMR) are used, new
partitions are dynamically created and the
communication partner set changes. However, the
partner set only changes after a load balancing stage
which typically occurs infrequently compared to the
typical execution time of the application, as such a
step is relatively expensive and may involve data or
process migrations.
Based on this observation, we propose the use of two
separate communication networks in a HPC system:
one mechanism to accomplish long-lived transfers of
large amounts of data, and another to accommodate
collectives and short-lived data exchanges. Separating
the communication classes in this manner enables us
to target each class with the most appropriate network
technology and operating mechanism.
For long-lived bulk data transfers, we propose an
Optical Circuit Switching (OCS) interconnect, some
components of which have been used in wide-area
backbone networks and SONET cross-connects to
support telecommunications traffic loads. These
switches use optics at all elements of the data path.
Setting up a circuit (or switching) is typically
accomplished through the use of MEMS-based
(Micro-Electro-Mechanical Systems) mirror arrays
that physically move the light beam to establish an
optical data path between any input and any output
port. Once a circuit has been established,
communication between the end-points occurs at very
high bandwidth and very low latency. Furthermore,
since all data paths are optical, the switch is nearly
impartial to the distance between communication end-
points. In other words, two distant end-points can
communicate at equal bandwidth and near-equal
latency as two neighboring ones.
We use the term communication partner throughout
this paper instead of communication neighbor. The
term neighbor connotes a physical closeness which
our circuit switches are explicitly directed at
eliminating - i.e., on a good circuit switch, everybody
is a neighbor (physically equally close, essentially),

and the communication partners can be changed on
demand by re-configuring the circuits.
Optical circuit switches can be relatively inexpensive
and power-efficient compared to their packet-
switched counterparts. Because optical switches
directly manipulate the light beams, without any
electronic processing, no optical to electrical to
optical (O-E-O) conversions are needed. This results
in tremendous savings of very expensive optical
transceivers which are needed to link high bandwidth
electronic packet switches. Hence, optical fibers can
be used to interconnect high bandwidth signals in
between the cabinets of HPC processors and switches.
All optical switches do not need such conversion, as
they operate directly on the high bandwidth optical
signal a fiber delivers and passively redirect such
optical signal into another fiber. The main drawback
of these MEMS-based switches is the relatively long
time (order of a few milliseconds) they need to
reconfigure their connections. However, since the
circuits established using the OCS network will be
used for long-lived data transfers, the slower
switching speed will not be a performance
impediment. For collectives and transient
communication, we propose a secondary non-high-
bandwidth electronic packet network. With its high
switching speed, the secondary interconnect is able to
handle collective and transient traffic with low
latency. At the same time, we are able to keep the
secondary interconnect from being overwhelmed by
using it for only a small portion of the overall traffic.
The cost-performance advantages of the combined
interconnect come about because the components of
each network are optimized to handle the kind of
traffic for which they are best suited to handle.
For this paper, a detailed cost analysis is inappropriate
since it would of necessity be too speculative. We
have strong expectations that the costs of OCS will be
significantly cheaper, but the uncertainties in the
expected costs and cost take-down trends are large
enough that it would distract from the paper's other
results to even address it.
Finally, we would like to emphasize that this paper
contains many ideas and areas of work that are
separate research topics in their own right. However,
we feel it is important to give a global picture of the
OCS system architecture and how various research
aspects relate to it. By no means is it intended to give
complete details since this would be well beyond the
scope of this paper. Further details in each research
area including compiler work, performance

 3/

simulations, application analysis, and system
architecture will be published in due course. We hope
the reader will benefit from a description of the
interdisciplinary mix of research areas that are
considered when a new architecture is proposed, and
this will help to illuminate the various inter-
dependencies of the work in this paper.

1.1 Related and Previous Work
Perhaps the most well known example of a circuit
switching based network is the NEC Earth Simulator
[18]. The Earth Simulator (ES) network uses a huge
electronic crossbar, with 640x640 ports. This crossbar
is made of 128 independent data path switches
forming circuits, each handling one byte of data, and
a control unit that is used to setup these data path
switches. Each processing node has 8 separate
channels which are 13 bytes wide (data), and 3 bytes
wide (ECC), that are used to communicate with other
nodes. Thus each of the eight vector processing units
in a processing node can share the 8 channels and the
circuits formed by the data switches to communicate
to other nodes.
The ICN (Interconnection Cache Network) [16,17] is
similar to the ES in its one-to-one relationship
between each processing node and one channel or
circuit that it handles. As with the ES, in ICN the
processing nodes are grouped into small clusters, such
that a small electronic packet switch can be used to
share any circuit already established to other clusters
with any one of the group’s processing nodes. In the
ES case, the size of such an ICN cluster is 8 (for 8
vector processing units in a node) and 8 circuits that
each cluster (node) can form to other clusters (nodes).
Our approach has two distinctive improvements. First,
the ratio of the number of circuits to the number of
processors in a node can be greater than one-to-one
(i.e. each node may have an independent network
interface controller (NIC) handling multiple links and
thus multiple circuits). Secondly, we add a separate
low-bandwidth network to handle small-traffic
communication needs and collective operations.
Although, an Electronic Circuit Switch (ECS) has
faster circuit setup and release times, for some AMR
codes and other irregular communication patterns
with a switching degree need larger than 8, the ES
may perform poorly. An example of a study of four
applications is given in [28]. However the authors are
yet to investigate the performance of AMR type
applications which may not present a good match for
the ES network, for the above reasons.

The Blue Gene/L machine also uses a coarse form of
circuit switching intended to help with system
partitioning and job scheduling [2,3]. Mid-plane
sections having 512 nodes, connected as a 3-D torus,
use X, Y and Z reconfigurable switches. These
switches are used to partition up to 64K nodes (with
128K Processors) into smaller partitions that maintain
a 3-D torus topology. The switches are reconfigured
per job allocation forming a partition, and are not
changed while a job is running. This is a coarse, per
job, type of circuit switching, and has limitations in
matching to the more complex communication
patterns that, for example, HPC applications exhibit.
Previous work has also attempted to split traffic and
carry it over different networks, however with a
different architecture and for a different use. For
example the Gemini and Clint projects [8,14] both use
multiple networks for communication between
processor nodes.
The Gemini architecture consists of a dual multistage
network fabric. One such fabric is made of optical
2 × 2 cross connect switches, made to operate in a
circuit switching mode, while the second network is
made of regular 2 × 2 electronic packet switches, and
is also used to setup the optical circuits of the first
network. Hence, each node has two ports. The optical
circuit switching port is used for long lasting
transfers, but due to its circuit switching nature, has a
relative higher setup time. Since each node has only
one port of each (optical and electrical) into the dual
network structure, setting up an optical circuit will tie
that port to only one specific destination. If there are
long messages that need to be transferred to only one
specific destination, such a circuit will be
advantageous. However, as we will see in Section 3
HPC applications require more than one destination
per node (rather a partner set of such nodes).
The Clint architecture is similar to Gemini, in that two
types of switches are used, although no optical
technology is used. Both switches are implemented
using VLSI technology but their structure is different.
The “Bulk Switch” is made for electronic circuit
switching, and thus has no buffers or per packet
arbitration. The 2 × 2 switch is setup centrally,
establishing a circuit from one processing node to
another. As with Gemini, the Clint system uses the
Bulk Switch for long messages that are not sensitive
to latency. Latency is considered higher for these
circuit switching paths, since it takes a long time to
establish a circuit and then tear it down. In the Clint
system, as with Gemini, there is no sharing of already

 4/

established circuits. Each node will have to setup its
own circuit and hopefully will have enough data to
send through this circuit before it needs to tear it
down and setup another circuit to another destination.
Finally, related distributed computing work attempts
to use the Internet as the network between large
processing sites. The computing performed over large
distances communicates through optical fibers, with
potentially different TCP/IP protocols. Examples are
the Cheetah and OptIPuter projects. [11,33]. Both
Cheetah and OptIPuter are aimed at very-widely-
distributed computing (i.e., 100's of km - between
sites), and result in different network costs than those
in HPC clusters. Cheetah's architecture is aimed at
solving the problem of transferring huge files
(Terabytes to Petabytes) between geographically
separated research labs. A circuit is setup as a means
to enjoy better performance than the use of standard
TCP/IP for remote file transfers. OptIPuter's
architecture is aimed at linking together clusters of
various types (particularly storage clusters and
visualization clusters with compute clusters) over
similarly long-distances. Neither allows, for example,

the running of fine-grained HPC applications which
are of interest here.

1.2 Paper Outline
In order to be viable, optical circuit switching must
overcome several nontrivial challenges. What circuits
should be established in the switch and when? How
should random communication patterns be handled?
What happens when the communication degree of an
application exceeds the degree of connectivity
provided by the OCS? We address all of these
questions in this paper.
An architectural description of a high performance
computing system incorporating optical circuit
switching technologies is given in Section 2. In
Section 3 we provide an application analysis that
makes the case for using an optical circuit switching
approach. Section 4 describes how optical circuit
switching can be incorporated into a high
performance computing system, and the software
support necessary in order for seamless integration.
Conclusions on this work are given in Section 5.

Storage Nodes

Network I/O

Service or
User login

Electronic Packet Switch Network

Optical Links

Electrical Links

Optical Circuit Switching Network

Optical Cross-Connect
Circuit Switches

Electronic Packet
Switches

SMP/Cluster
Compute Nodes

Processors,
Local Memory,
& Local Cluster
interconnect

Figure 1. System design containing two complementary networks that handle i) small-degree high-

bandwidth communications (Optical) and ii) large-degree low-bandwidth communications as well as
collectives (Electronic).

 5/

2. OCS-BASED SYSTEM DESIGN
The system considered here is for HPC applications
that currently execute on large-scale clusters or
parallel-processing machines, such as those used at
national laboratories or supercomputing centers. In
these systems, thousands of processors, and their
associated memory and disk storage subsystems, are
tightly coupled together across a high-performance
network. Typically, the network delivers a bandwidth
up to tens of Gb/s to each processor, and the latency
across a network with thousands of nodes is several
microseconds. As systems’ throughput requirements
steadily grow, the bandwidth delivered will approach
100’s of Gb/s per processor across networks
supporting systems in the order of 100,000
processors.
Currently, supercomputing systems are typically
interconnected using fat-tree networks (indirect or
multi-stage interconnection networks) of electronic
packet switch chips or switching elements, or direct
networks such as 2-D or 3-D mesh/torus topologies.
There are many topology variations possible,
depending on full system size and switching elements
used.
Our proposed system is made of two complementary
networks as shown in Figure 1. It has the following
components:
Compute nodes. These contain multiple processors,

their associated memory, storage, and network
interface components. The organization of these is
relatively opaque, as far as the OCS network is
concerned. That is, they may consist of SMP
(Shared Memory Processor) nodes sharing a single
operating system, or clusters of SMPs, or clusters
of single-processor nodes. In all cases, the
compute nodes are assumed to contain at least one
NIC (Network Interface Chip) or HCA (Host
Channel Adapter), and some local electronic
switching capability to allow traffic from the
compute nodes to be distributed across at least one
plane of electronic packet switches, and several
planes of optical circuit switches. The compute
nodes have optical transceivers to provide fiber
interfaces to the network switches.

Optical Circuit Switching (OCS) network. This
network is made of multiple planes of all-optical
switches. Circuits are established between inputs
and outputs of this network, inter-connecting two
compute nodes via a link in their NICs. These
circuits can be shared among the communications

going from any processing element in one compute
node to any processing element in another node.
Latency through this network is lower than
through the Electronic Packet Switch (EPS)
network once circuits are established, since
electronic buffering and O-E-O conversions are
not required.

Electronic Packet Switch (EPS) network. This
network is made of standard switches which do
not have a particularly high bandwidth. When
trying to increase both the radix (port count) and
the bandwidth per port of each switch, the
resulting electronic switch becomes too complex
and expensive to make. However, making a high
radix electronic switch, with low bandwidth per
port is feasible. Such a switch could also contain
support for collective operations, aiding HPC
applications that have a critical performance
dependence on collectives. Our initial study shows
that using 10% of the OCS bandwidth, for the EPS
is a good design point.

Details of our proposed system and technology are
described in the following sections.

2.1 Optical Circuit Switches
An important distinction in switch design is that
between packet switches (where the duration of an
input-port-to-output-port connection lasts for the
period of one packet), and circuit switches (also
sometimes called optical cross-connects), where such
a connection is maintained for the duration of many
packets (typically millions).
Several optical packet switch architectures have been
described and demonstrated. For example, [20]
describes an optical packet switch based on using
fiber- and wavelength-selection filters at output ports
to select signals broadcast from each input, and [15]
describes an optical packet switch based on
wavelength-tunable transmitters and an array
waveguide grating capable of routing various
wavelengths to various output ports. Such
architectures are capable of switching traffic on a per-
packet basis, with switching times (i.e. the time for
data from one input to be switched from one output to
a different output) of less than 10 nanoseconds.
Designing arbiters for such a packet switch, however,
is extremely challenging – switch element arbiters
capable of arbitrating across 64 ports within a packet
duration of roughly 50ns (256 bytes at 40Gb/s) are
near the limits of aggressive design. Also, designing

 6/

switching technologies capable of reconfiguring
connections in less than 10ns or so is challenging.
For this work, however, we consider network
architectures using optical circuit switches; switches
where the duration of an input-port-to-output-port
connection lasts for the period of typically millions of
packets (at least several milliseconds). Use of circuit
switches rather than packet switches dramatically
simplifies the arbiter design. Such distinction may
also widen the range of technology options available
to build the interconnect.
The optical circuit switching technologies with the
best promise of providing the highest switch radix and
throughput are two-dimensional MEMS devices, as
described in [29]. MEMS optical switches have been
shown to scale to the order of 1024 input and output
ports, and switches with 100s of ports are generally
available. They could feasibly support wavelength
division multiplexed data per port of up to 100’s of
Gb/s, with appropriate transceivers. The most
promising devices operate on the principle that two
arrays of tiltable mirrors can redirect the photonic
signals from each input fiber to one of the output
fibers.
It is generally true that switch elements with higher
radix and throughput (bandwidth across switch ports)
are preferable in order to reduce the number of
switching stages and switch-to-switch links that use
more expensive optical transceivers. Electronic packet
switches are strongly limited by the capabilities of
silicon integrated circuits. A single switch element
chip with throughput of ~1.2 Tb/s (e.g. 512 signal I/O
pins at 5 Gb/s per pin pair) would be a very
aggressive chip design, and a supercomputer network
providing, for example, 40 Gb/s to each of 8,000
nodes would require a multi-stage network with
several stages and many inter-switch links
substantially increasing the cost of such a network.
Higher node counts, in the order of 32,000 or 64,000
nodes, could mushroom the overall cost of the
network and the system, due to the use of expensive
high bandwidth optical transceivers between the
electronic switching stages.

2.2 Handling Collectives and Low-Bandwidth
Communication Needs
Optical circuit switching could very well provide the
primary communication path for high performance
applications. However, there are types and patterns of
communication which are not natural matches for
OCS networks. Specifically, some high performance

computing applications have an amount of random or
global communication, and many also make heavy
use of collective operations. These applications can
benefit from embedded collective communication
support in the electronic switching network (not
merely at the end-points or network interfaces).
Here we briefly examine the issue of collective
support. Within switches, this support can be broadly
categorized into two basic types: replication and
combining. Collective operations such as broadcast,
barrier synchronization, reductions, and all-reduce
(reduction followed by a broadcast) can be
implemented by sequences of these two basic types.
Multicast replication is an operation that is
increasingly supported in commercial electronic
computer system interconnects such as InfiniBand
switches. Some optical switching technologies may
also be natural matches for replication. However, to
be inexpensive, OCS technologies are based on
MEMS technology (movable mirrors) which are not
inherently capable of replicating a beam of light. The
other basic collective operation—combining—is an
operation which requires logic processing, and no
practical optical solutions exist. There are a number
of examples of combining support within electronic
switches. Perhaps the best-known is the Blue Gene/L
machine [1], and other examples include the Cray
T3E [30] and the Thinking Machines CM-5 [26].
Support for operations such as barrier synchronization
and reductions can be made reliable without excessive
difficulty [31].
Therefore, we propose to handle these global and
collective communication requirements through the
use of the secondary EPS network. This network is
expected to be used sparingly, and is therefore
constructed to provide low-latency communication to
partnering processors at low-bandwidth levels.
The other use of this network is to handle
communication exceptions. These are low-bandwidth
communications that do not merit the overhead and
expense of setting up a circuit in the OCS. Since we
want to optimize the OCS and its ability to handle the
main fire-hose data circuits, we would use the
electronic network also for those cases of low-
bandwidth communication among the processing
nodes in the system. This will help bound the set of
application communication partners to the number of
links or circuits that can be accommodated by the
OCS network.

 7/

2.3 OCS Network Latency
The cost to setup a circuit and tear it down in
architectures such as Gemini [8] makes the latency
cost higher than when using other packet switching
networks. With OCS, multiple circuits are shared
amongst groups of processing nodes, and circuits do
not need to be setup and torn down as often. Thus the
latency in our OCS circuit switching network can
actually be lower than in a packet switching network,
as is further described below.
Both the Gemini and Clint systems are limited in the
ways a node can communicate with other nodes in the
system. The sharing of many circuits among clusters
of nodes in the OCS system allows the network to
match the communication patterns of HPC
applications, without the need to keep resetting
established circuits between processing nodes. Once a
circuit is setup, it can be repeatedly used by any
member of a node to communicate with any member
of the remote node. Hence, this mechanism actually
results in a lower latency of communication for
packets or messages passing through a circuit.

L/2 L/23Δ

L/2 L/2

ρ ρ

ρ ρ

Fat-tree packet switching network

Optical circuit switch

ρ = routing within a cluster
L = end-to-end propagation delay
Δ = packet switch delay

Cluster

Packet switch

Optical switch

Figure 2. Comparison of latency cost in a fat-tree
packet switch and optical circuit switch networks.

A comparison of the latency through a fat tree or a
multi stage packet switching network and through an
OCS network is shown in Figure 2. For a typical
routing delay within a cluster of 100ns, a packet
switch delay of 50ns, and an end-to-end propagation
delay of 300ns (60m at 5ns/m), the fat-tree packet
switch delay is 650ns. In comparison the delay for the
optical circuit switch is only 500ns (the transmission
time through the optical switch is negligible).
They key difference in achieving a lower latency in
the OCS is in the reuse of already established circuits.
If a compute node has only one circuit switch port it
can access, such a reuse will not be practical. The
sharing of many circuits in the OCS architecture by a
compute node allows a match to what many HPC
applications need (as presented later). Hence, our
OCS system achieves a better latency than regular

packet switching, and avoids the contention, queuing
and arbitration at the packet switches that needs to
happen on a per packet basis. Such queuing delays
could add latency especially with large packets and
messages. Latency is one of the important factors
affecting the overall performance of HPC applications
which makes grid or internet based approaches, such
as the OptIPuter or Cheetah, impractical.

3. COMMUNICATION REQUIREMENTS
There are several aspects of the communication
pattern exhibited by an application that are important
when considering the utilization of a dual OCS and
EPS network architecture. The most important of
these are:
Bounded communicating partner set. The set of

partners from each processor should be bounded.
Ideally the communication degree should be small,
where the communication degree here is taken to
be the maximum size of the set of partners across
all processors. Bounding the communication
degree facilitates a limited number of circuits that
need to be established within the OCS network.

Slowly changing communication partner set. The
set of partners should ideally be slowly changing.
Establishing an optical circuit can take several
milliseconds when using MEMS technology due to
the mechanical rotation of mirrors. This cost is
amortized over the time in which the
communicating partner set persists, and thus is
negligible if the partner set slowly changes – in the
order of seconds.

Mapping of communicating partners to the dual
networks. Communicating partners with high-
bandwidth requirements should utilize the high-
bandwidth OCS. Similarly, communicating
partners with low-bandwidth requirements should
utilize the secondary low-bandwidth electronic
network. The assignment of communications in
this way will also aid in bounding the size of the
communicating partner set on the OCS and hence
the overall effectiveness of the OCS.

The “degree of communication” of the application is
an important concept here. In the OCS architecture, it
matters how many communication partners a node
has (whereas it doesn't matter so much in other
network architectures such as Gemni or Clint [8,14]).
One of the key points of the OCS architecture is that,
if application requirements are such that a node needs
to communicate with k partners, then the node will

 8/

need to have access to at least k planes of optical
circuit switches to achieve good performance.
There are actually two possible definitions for the
“degree of communication”: 1) the number of
partners a node sends data to (unidirectional circuits)
or 2) the number of partners a node exchanges data
with (bidirectional circuits). In this paper we assume
the later definition (i.e., every circuit we set up is
actually a bidirectional link), since (a) we need a
return channel for flow control and
acknowledgements of intact data transmission
(although these could pass through the electronic
network in the case of a unidirectional setting) and (b)
most applications require bidirectional data exchanges
– there are exceptions which may not have a
symmetric bandwidth requirement per link. However,
our simulator and method used to setup a circuit,
handles each direction independently (hence a circuit
will be setup from one cluster to another will be
unidirectional, so it may take two setups, one on each
side and could be on a different switching planes).

3.1 Analysis Approach
In order to analyze the communication requirements
of an application, dynamic call-graph information and
message passing activity is collected from executing
the application. Logged events include: subroutine
entry and exit, as well as communication events such
as collectives and point-to-point messaging.
Subroutine entry and exit events are produced from a
source-to-source translation with instrumentation calls
placed at all subroutine entry and exit locations, and
the PMPI (MPI Profiling) interface is used to
seamlessly instrument the communication calls.
Point-to-point communications simply record the
source, destination, size, and data-type of the
messages. Similarly, the sizes and data-type of
collective communications are also recorded.
All events are time-stamped, and in a similar manner
to Paradyn [6], the concepts of inclusive and
exclusive metrics are used to record the duration
within a subroutine. Trace files are collected per
processor, and are made available in separate files for
post-processing. The instrumentation and profiling
method has been described [32] and was originally
used to compare differences in processing flow across
processing threads. The source-to-source
instrumentation is similar as that used in other tools
such as TAU [4]. Communication patterns can be
constructed using this trace data as presented in [24]

and are further analyzed here to examine the three
issues listed at the beginning of Section 3.
A communication matrix is considered at each
communication call-point in an application. A
communication call-point includes the prior call-stack
to the communication point. From our experience,
this appears to be an appropriate level of detail at
which to analyze the communication patterns. It has
proved to be sufficient to reveal all the different
communication patterns that occur across a range of
scientific applications.
A communication call-stack is defined to be

R1 -> R2 -> … -> Rn -> CCP (1)
where Ri denotes a specific routine in the application,
CCP denotes the communication call-point, and
routine Ri calling routine Rj is denoted by Ri -> Rj.
The use of the call-stack for each communication call-
point is important as many applications employ the
use of a communication layer which in turn is used to
call the message passing library such as MPI. In
addition, a communication matrix can be constructed
for sub-sets of an application’s entire execution. For
instance, if the application’s communication
requirements change dynamically, separate matrices
can be constructed for each iteration.

3.2 Sample Applications Analyzed
The communication requirements of a broad range of
applications have been analyzed, many of which have
their origins in either the Department of Defense
(used in the HPC modernization program), or the
Department of Energy (the Accelerated Strategic
Computing program, and from the Office of Science).
Most applications are in active production use on
large-scale machines. Many are also being used
within the DARPA High Productivity Computing
Systems (HPCS) program. It is not the intention of
this paper to provide details on the applications
themselves, but rather to analyze their suitability to
the use of a dual OCS / EPS network architecture.
The applications analyzed are:
CAM – the atmosphere component of the Community

Climate System Model (CCSM), used in both
stand-alone and coupled simulations [9].

CICE – the sea ice component of the CCSM
simulating multiple layers of ice and snow [5].

HYCOM – the Hybrid Coordinate Ocean Model
implements a general circulation model which
accurately represent depth changes from stratified

 9/

open ocean, to shoreline regions. It is available
from NRL [19].

KRAK – a Lagrangian hydrodynamics application that
originates from Los Alamos National Laboratory
(LANL).

LBMHD – this application simulates a charged fluid
moving in a magnetic field using a Lattice
Boltzmann formation of the magneto-
hydrodynamics equations. It originates from
Lawrence Berkeley National Laboratory (LBNL).

PARTISN – this application is a comprehensive
implementation of SN transport, the solution of the
Boltzmann equation using the discrete ordinates
method, on structured meshes. This code
originates from LANL.

POP – the Parallel Ocean Program is the ocean
circulation component of CCSM. POP is used
extensively in coupled simulations. It originates
from LANL [22,25].

RF-CTH2 – an adaptive mesh shock-dynamics
application that originates from Sandia National
Laboratory (SNL) [10]. It is a part of the DOD
technology insertion benchmark suite.

SAGE – an adaptive mesh (AMR) hydrodynamics
application used for the simulation of shock-
waves. Its performance characteristics have been
extensively studied [23].

SWEEP3D – A kernel application implementing the
main processing involved in deterministic SN
transport calculations. It originates from LANL
[21].

UMT2K – A further implementation of SN transport
but on unstructured meshes. It is available from
LLNL. Details on the performance of UMT2K can
be found in [27].

3.3 Communication Degree Analysis
Each application was instrumented and trace files
collected from a 128 processor execution apart from
HYCOM (124 processors), and CICE (100
processors). The data was collected on a 32 node, 4-
way, ES40 AlphaServer with a QSNet-1 fat-tree
network. A summary of the communication patterns,
whether they are static (i.e. unchanged throughout the
application execution) or dynamic, and their
communication degree is listed in Table 1.

Table 1. Details of the sample applications analyzed and their communication patterns.

Application Static /
Dynamic

Communication
Patterns Observed

Degree Comments

CAM Static 1-D partitioning 6 Communicates with first and second partners in X

CICE Static 2-D partitioning,
Master/Slave

4
P-1

Cyclic in X

HYCOM Static 2-D partitioning modified,
Row / Column reduction

6
12

Land only sub-grids are removed resulting in a modified 2-
D partitioning

KRAK Static Irregular 8 Irregular mesh whose structure can change but infrequently

LBMHD Static 2-D partitioning 4 Cyclic in X and Y

Partisn Static 2-D partitioning 4 Direction of communications differs across application
phases

POP Static 2-D partitioning 4 Cyclic in X, land only sub-grids are ignored in the
computation.

RF-CTH2 Static /
Dynamic

3-D partitioning modified 6 /
45

Communication is local partner. Some communications are
phased.

SAGE Static /
Dynamic

1-D partitioning modified,
reduction/broadcast

6 /
34

Pattern can change in each iteration when using AMR and
load-balancing

Sweep3D Static 2-D 4 Direction of communications differs across

UMT2K Static Irregular 16 Unstructured mesh partitioned.

 10/

Note that communication patterns listed are those
implemented in the applications by point-to-point
communications. The main communication pattern
for CICE, LBMHD, Partisn, POP, and Sweep3D is
logically two-dimensional resulting from a 2-D
partitioning of a 3-D data domain (except for
LBMHD which partitions a 2-D data domain). This
results in at most four communication partners per
processor and hence the applications have a
communication degree of four. Note that in CICE and
POP, the communication is cyclic in the logical X
dimension, and in LBMHD is cyclic in both the
logical X and Y dimensions. CAM uses a 1-D
partitioning of a 3-D data domain and each processor
communicates with at most six partners. For these
communication patterns, the communication degree is
low and easily handled by an OCS network.
CICE has a master-to-slave (one-to-all) pattern having
communication degree P-1 (the number of processors
minus one). However, this operation is infrequent and
could be mapped to the electronic network.
The communication pattern for HYCOM results from
a 2-D partitioning of a 3-D data domain, but sub-grids
representing only land are removed from the
computation. This arrangement results in ‘holes’ in
the 2-D processing array which are subsequently
filled by shunting adjacent sub-grids. HYCOM has a
low communication degree for the general boundary
exchanges. However, a two stage software reduction
is performed across rows and then up the root column
of the sub-grids. Thus the communication degree in
these stages is the order of √p.
SAGE and RF-CTH2 contain the only dynamically
changing communication patterns – all other
applications have a static communication pattern with
low degree. We will concentrate further analysis on
these two applications. Both can be used in two
modes – with AMR (Adaptive Mesh Refinement), or
without. When using AMR, grid-points in the
physical simulation can be generated and/or removed
dynamically, and load-balancing is employed to keep
the number of grid-points across processors constant.
However, the change in the mapping of grid-points to
processors affects the logically partnering processors
that communicate and thus alters the communication
pattern on an iteration-to-iteration basis.
The main communication pattern in SAGE is based
on a 1-D partitioning of a 3-D data grid but, due to the
AMR, the communication is not always nearest
neighbor [23]. The main communication pattern in
RF-CTH2 is based on a 3-D partitioning of a 3-D data

grid. The time between load-balancing in both SAGE
and RF-CTH was the order of tens of seconds on the
measurement system. Thus the cost of establishing the
necessary optical circuits in the OCS after each load-
balancing stage, of several milliseconds, would be
negligible. The communication degree listed in Table
1 is the maximum over all iterations of two input
decks to SAGE, and similarly is the maximum over
all iterations on one input deck to RF-CTH.
The communication degree per iteration is depicted in
Figure 3. It can be seen that the communication
degree varies on a per application cycle basis and is
between 11 and 24 for SAGE when using the two
AMR input decks TimingB and TimingC (which
differ in the physical simulation processed), and
between 8 and 127 for an AMR input deck to RF-
CTH. Note that there is an initialization in RF-CTH
which has a high communication degree requirement.
This occurs early in the processing and could be
mapped to the low-bandwidth electronic network
without substantially affecting the overall application
execution time.

3.4 Partitioning Traffic between OCS and EPS
The calculation of the communication degree as
shown in Figure 3 for both SAGE and RF-CTH is
based on all communicating partners in each iteration.
However, in the dual OCS and EPS architecture, only
communicating partners with high-bandwidth
requirements need use the OCS, and those with low-
bandwidth requirements will use the EPS network.
In order to analyze the partitioning of the messaging
across the two networks, a threshold filtering is
applied to the communication pattern as follows:

1) For processor Pi calc total bytes sent (TBi)
2) For Pi, order communications Pi -> Pj in terms of

bytes sent
3) Remove the lowest set of communicating pairs,

Pi->Pj, whose combined communication volume
is < TBi * THRESHOLD from the communication
degree calculation

where THRESHOLD is in the range 0.0 to 0.2 but
will typically be equal to 0.1 since the relative
bandwidth of the OCS to the EPS network is expected
to be 10:1. Note that this filtering partitions the
communication traffic from each processor so that
only a given percentage will be eliminated from the
OCS and is mapped to the electronic network.

 11/

The affect on the communication degree after
applying this threshold on SAGE are shown in Figure
4. Note that a threshold of 0.0 does not eliminate any
partners from the communication degree calculation.

0

5

10

15

20

25

30

35

1 6 11 16 21 26 31 36 41 46 51 56
Iteration number

M
ax

 C
om

m
un

ic
at

io
n

D
eg

re
e

Tim ingB

Tim ingC

(a) SAGE

0

20

40

60

80

100

120

1 6 11 16 21 26 31 36 41 46 51
Iteration number

M
ax

 C
om

m
un

ic
at

io
n

D
eg

re
e

large.input

(b) RF-CTH

Figure 3. Variation in communication degree.

It can be seen that the communication degree of
SAGE can be substantially reduced using this
threshold filtering method.
Shown in Figure 5 is the percentage of traffic that is
actually eliminated from the OCS and mapped to the
electronic network after applying the threshold filter.
Since the criteria for communication elimination takes
the set of processors whose traffic is less than a
threshold of the total, the exact amount of traffic
eliminated will be less than the threshold. The amount
of traffic eliminated will also depend on the
distribution of traffic amongst the communicating

partners, but it is guaranteed to be less than TBi
*THRESHOLD for each processor.
A similar analysis is shown in Figure 6 for RF-CTH.
It can again be seen that the threshold filtering

SAGE TimingB (128PEs)

0

5

10

15

20

25

1 6 11 16 21 26 31 36 41 46 51 56
Iteration number

M
ax

 C
om

m
un

ic
at

io
n

D
eg

re
e

0%
2%
5%

10%
20%

(a) SAGE (TimingB input)

SAGE TimingC (128PEs)

0

5

10

15

20

25

30

35

40

1 6 11 16 21 26 31 36 41 46 51 56
Iteration number

M
ax

 C
om

m
un

ic
at

io
n

D
eg

re
e

0%
2%

5%
10%
20%

(b) SAGE (TimingC input)

Figure 4. Communication degree after threshold
filtering.

operation significantly reduces the communication
degree by mapping the communications with low-
bandwidth requirements to the EPS network.

3.5 Communication Degree Summary
The communication behavior of these applications is
summarized by considering both the communication
degree and its dynamic behavior. This is shown in the
spatio-temporal graph in Figure 7. Figure 7(a) shows
the overall communication degree of the applications
prior to threshold filtering, and Figure 7(b) shows the
communication degree after threshold filtering. The

 12/

metric of rate-of-change is used to indicate the
frequency of communication pattern change on the
measurement system. This is plotted in Hz and the
time between changes is simply the reciprocal. A high
rate of change will require an increased number of

SAGE TimingB (128PEs)

0

5

10

15

20

25

30

35

40

45

50

1 6 11 16 21 26 31 36 41 46 51 56
Iteration number

Tr
af

fic
 E

lim
in

at
ed

 (%
)

2%

5%
10%

20%

(a) SAGE (TimingB input)

SAGE TimingC (128PEs)

0

5

10

15

20

25

30

35

40

45

50

1 6 11 16 21 26 31 36 41 46 51 56
Iteration number

Tr
af

fic
 E

lim
in

at
ed

 (%
)

2%

5%
10%

20%

(b) SAGE (TimingC input)

Figure 5. traffic eliminated from the OCS (mapped
to the EPS network) after threshold filtering.

optical circuits to be established during run-time and
thus increase the overhead of the OCS. The overhead
of establishing the OCS circuits, in terms of the
percentage increase in application run-time, is shown
on the right-hand Y-axis in Figure 7 based on a
MEMS set-up time of 3 milliseconds.
For the applications of CAM, CICE, LBMHD,
Partisn, POP, Sweep3D, HYCOM, and UMT2K, the
rate of change is zero – i.e. there is no change in the
communication pattern, and the communication

degree varies between 4 and 16. This can be seen by
the points on the X-axis in Figure 7(a). KRAK has a
very slowly varying pattern and it’s rate-of-change is
slightly above zero. For SAGE, and RF-CTH the
communication pattern is dynamic. The range in

RF-CTH large.input (128 PEs)

0

20

40

60

80

100

120

1 6 11 16 21 26 31 36 41 46 51
Iteration number

M
ax

 C
om

m
un

ic
at

io
n

De
gr

ee

0%

2%

5%

10%

(a) Communication degree after threshold

RF-CTH large.input (128PEs)

0

5

10

15

20

25

30

35

40

45

50

1 6 11 16 21 26 31 36 41 46 51
Iteration number

Tr
af

fic
 E

lim
in

at
ed

 (%
)

2%

5%

10%

(b) Traffic eliminated from the OCS

Figure 6. Filtering analysis (RF-CTH)

communication degree from its minimum to
maximum and the range in the rate-of-change over
application iterations are shown in Figure 7 by the
extent of the bars. For instance the communication
degree in SAGE varies between 11 and 34, while the
rate-of-change varies between 0.004Hz and 0.029Hz
(or time between load-balancing steps varies between
34.5s and 250s).

Figure 7(b) shows the same analysis for SAGE and
RF-CTH but after the threshold filtering, at a level of

 13/

10%, has been applied. The threshold filtering
reduces the communication degree as shown earlier in
Figures 4 and 6(a). Note however that the rate-of-
change does not change. The set of communicating
partners still changes dynamically at the same rate.

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0 10 20 30 40 50
Communication Degree

Ra
te

 o
f c

ha
ng

e
(H

z)

0.000

0.003

0.006

0.009

0.012

0.015

0.018

0.021

0.024

0.027

0.030

O
CS

 c
on

fig
ur

at
io

n
ov

er
he

ad
 (%

)

RF-CTH
SAGE
CAM, CICE, LBMHD, Partisn, POP, Sw eep3D
HYCOM
KRAK
UMT2K

(a) without threshold filtering

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0 10 20 30 40 50
Communication Degree

Ra
te

 o
f c

ha
ng

e
(H

z)

0.000

0.003

0.006

0.009

0.012

0.015

0.018

0.021

0.024

0.027

0.030

O
C

S
co

nf
ig

ur
at

io
n

ov
er

he
ad

 (%
)

RF-CTH

SAGE

(b) with threshold filtering (at 10%)

Figure 7. Dynamic analysis of the communication
degree.

4. SYSTEM INTEGRATION
As described in Section 2, the proposed
communication structure consists of two networks

with different characteristics; an OCS which has a
very high-bandwidth but requires a relatively large
time to establish connections (circuits), and an EPS
network that has a relatively low bandwidth. Due to
the large delay for establishing connections in the
OCS network, connections should be established only
if they are used extensively for an extended period of
time. This implies that communication over short-
lived connections should be realized through the EPS
network.
As described in Section 3, many applications exhibit a
pattern of temporal locality which allows the
overhead of establishing circuits in the OCS networks
to be amortized over the life-time of the connection.
However, other applications may exhibit poor
temporal locality, and the system should be able to
efficiently deal with such cases. In general,
communications in high performance applications can
be classified into three different classes:

1) Communications that exhibit good temporal
locality and can be determined statically before
execution.

2) Communications that exhibit good temporal
locality but cannot be determined statically
before execution.

3) Communications that exhibit poor temporal
locality.

We will first describe a scheme in which the second
class of communications can be dealt with. We then
show, in Section 4.1, how to improve communication
performance by discovering the communication
patterns at compile time. The case of poor temporal
locality is dealt with in Section 4.4.
As described earlier, the reason for having two
networks is to use the OCS to establish connections
between pairs of nodes that communicate heavily,
while routing traffic between lightly communicating
nodes through the EPS network. We assume that there
is no a priori knowledge about the traffic volume
between any two specific nodes, and will rely on a
run-time system to determine which connections to
establish in the OCS.
In the scheme, when a NIC receives a message from
an attached node, it has to determine whether to send
the message through the EPS or the OCS network.
Initially all messages from a given source node, s, are
routed through the EPS network. However, by
monitoring the traffic out of s, it is possible to detect

 14/

when the traffic between s and a given destination, d,
justifies the establishment of a dedicated circuit in the
OCS. When such a decision is made, the NIC
generates a request to the OCS to establish a
connection between s and d. Different hardware and
software traffic monitoring techniques can be used,
and different policies can be devised to determine
when a dedicated connection between two nodes is
justified. We call such a policy a migration policy,
and an example for a simple migration policy is given
in Section 4.3. After the NIC is notified that the
connection between s and d is established in the OCS,
all subsequent traffic from s to d can be routed on the
circuit established in the OCS.
Given that the OCS cannot accommodate all possible
connections simultaneously, some provision has to be
taken to tear-down an OCS connection when the
migration policy decides to add a new connection to
an OCS which is already fully populated by existing
connections. A replacement policy is thus needed to
determine which existing connection(s) to tear-down
in order to make room for the new connection
determined by the migration policy.
In addition to establishing long-lived connections in
the OCS, a given logical topology may also be
realized and used to route messages. For example, a
logical ring may be embedded in an OCS by
establishing a connection between every two adjacent
nodes n and n+1. Of course, more efficient logical
topologies, such as tori, hypercubes, and trees can be
embedded in an OCS and used for routing messages
between arbitrary sources and destinations. For multi-
hop connections, each hop will traverse an optical
connection in the OCS with the optical signal being
converted to electronic and optical again at each NIC
that also acts as a router.
Hence, the traffic monitor should be equipped with
the capability of detecting when the communications
in a running application do not exhibit temporal
locality. Upon making this determination, the
migration policy should embed a given predetermined
logical topology in the OCS and use multi-hop
routing in the OCS, in addition to using the EPS
network for communication.

4.1 Finding Communication at Compile-time
The efficiency of the scheme described above can be
improved if the communication requirements of an
application are known at compile-time. Specifically,
through compiler analysis, it may be possible to
predict the connections that will exhibit heavy traffic

at run-time, and to insert code in the executable that
will be sent to the NIC, to establish these connections
in the OCS. This compiled communication technique
has been previously proposed for different networks
[7,12,13,34]. Note that it is possible to combine
compiled communication with run-time circuit setup
migrations in the OCS system. Specifically, the
instructions inserted in the code assist the migration
and replacement policies with the time to establish
and tear-down the statically determined connections.
The run-time monitoring system will be left to make
decisions concerning the connections that could not
be determined statically in this way.
Different applications have different types of
communication patterns. These communication
patterns can be classified into three categories: static,
persistent and dynamic.

Static — A communication pattern is static if it is
completely known through compile-time analysis.

Persistent — A persistent communication exists if
although it cannot be determined statically, it is
set and does not change for a relatively long time.

 Dynamic — A dynamic communication pattern
cannot be determined until run-time when the
communication operations actually occur.

The same terminology can be used to describe
individual communications—static, persistent and
dynamic. To represent these in the compiler, statically
known communications are represented with
constants, persistent connections are represented with
symbolic expressions that will be resolved at run-
time, and dynamic communications are represented
with an “unknown” symbol. While many static and
persistent communications may be selected for
routing through the OCS network, some static and
persistent communications will not use the OCS if
their data sizes are not large enough or if they do not
occur often enough to exceed a beneficial threshold
determined by the technology. Those communications
under such a threshold will be handled by the EPS
network.
This classification scheme allows a determination of
whether or not there are opportunities for (1) pre-
establishing connections in the OCS prior to use for
reducing or eliminating the relatively long connection
establishment overhead, and (2) determining which
connections are candidates for use in the OCS based
on static information about the message sizes and
frequency of communication.

 15/

Many previous efforts to analyze applications’
communication characteristics are based solely on
trace analysis. However, traces can provide the
communication information for only a single
execution instance of an application on a particular
platform. To better formulate communication pattern

Figure 8. Compiler system paradigm.

needs, we may require a new communication pattern
representation scheme. The flow shown in Figure 8
compiles C or Fortran + MPI applications and
determines the communication patterns contained in
the code. The compiler builds a communication graph
based on a traditional control flow graph to represent
the communications within the application. The
communication graph is used to build a
communication abstraction, which is the basis for the
compile-time communication pattern. The compiler
also has the capability to generate smart traces, or
traces that correlate features of the code such as
conditional statements and loops with communication
operations. These traces can be used for further study
of the applications or simply to verify the
communication pattern discovered at compile-time.
Once the communication pattern is determined, the
compiler inserts communication instructions into the
application for the configuration of the OCS. Two
types of communication instructions are designed in
our prototype compiler:

1) Network configuration setup instructions
2) Network configuration flush instructions

Network configuration setup instructions are used to
pre-establish network connections in order to reduce
the setup overhead of the OCS. Network
configuration flush instructions are used to flush the
current network configuration effectively de-
allocating the circuits that are no longer used. This is
helpful when the application moves into a different
phase and a run-time prediction scheme is employed
to configure the OCS. This reduces the number of
network conflicts that would otherwise be necessary
without the compiler’s information.

As described earlier, a compiler can be used to
determine the different phases of execution and thus,
different communication patterns. By simply adding a
Flush command to the software execution, the
Predictor can be reset to an unbiased state. For
example, during the load balancing phase of SAGE,
the communicate pattern can be completely changed.
In these cases, it is best if the predictor is not biased
by communications in the prior phase.
If the compiler can predict the communication
pattern, then this static information can be used in
place of prediction. However, the compiler may
determine that some of the communications are
dynamic and not statically deterministic. In such
cases, it would be beneficial for the compiler to be
able to bias the Predictor with the knowledge of the
static communications and rely on the Predictor to fill
in for the dynamic communications.
Additionally, the information from the Predictor can
be used in subsequent executions of the same
program. In essence, the Predictor could also be used
as a profiler during an initial execution to assist a
second execution of the same code. This is due to the
fact that the information required to perform
prediction is the same information that is required to
perform profiling. In prediction, the destination,
frequency and average length of messages, for
example, are used to estimate the benefit of setting up
a circuit in the OCS network. In profiling, this
information is collected but is statistically analyzed.
This information is extremely valuable to the
Predictor. For example, if the maximum number of
destinations is known and there are sufficient circuits
to handle all possible destinations, then the circuits
could be allocated according to the estimated
bandwidth and adjusted at run time to fit the actual
distribution. However, if there are fewer circuits than
destinations and it has been shown from prior runs
that all destinations are used equally, then it would be
best not to change the allocation dynamically. The
profile information may also show a mixture of these
two examples depending on the execution phase.
Irrespective of the actual behavior pattern,
prediction/profile data from prior runs could be used
to bias the Predictor for increased performance.
Figure 9 shows the communication pattern for the
LBMHD application. This application consists of a
single communication phase. In Figure 9(a) we show
the communication partners for a processor of ID
myrank as generated by our compiler. Each row
contains a symbolic expression for one of the

 16/

communication partners. Each processor has a set of
four other processors with which it communicates.
Because the processor count, P, and the processor
rank are not known at compile-time these symbols are
resolved at run-time to generate the final
communication matrix.

⎣ ⎦()() ⎣ ⎦
⎣ ⎦()() ⎣ ⎦

⎣ ⎦ ()⎣ ⎦() ⎣ ⎦
⎣ ⎦ ()⎣ ⎦() ⎣ ⎦

counts) processor squarefor P P(or P P P where

mod11
mod11

mod1
mod1

Px

PmyrankPPmyrankmyrankPPmyrank
PmyrankPPmyrankmyrankPPmyrank

PPmyrankmyrankPPPmyrank
PPmyrankmyrankPPPmyrank

yxyx

xxxxx

xxxxx

xxxxx

xxxxx

===

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−+−+
++−+

−+−
−++

(a) matrix generated by the compiler

(b) communication pattern from a 64 processor trace

Figure 9 – Communication pattern for LBMHD
However, in this example since P and myrank are the
only symbols in the expression, this matrix is
considered statically known as it may be entirely
resolved at load-time prior to execution. Thus it is
possible to entirely configure the OCS for LBMHD
based on compiler analysis prior to execution. In
Figure 9(b) we show the actual trace generated from a
run on 64 processors. The colored pixels indicate one
or more communications between source processors
(vertical axis), and destination processors (horizontal
axis). This trace confirms that each processor
communicates with four other processors (seen by
examining a single row or column in Figure 9b).
In addition to LBMHD, we used our experimental
compiler to study the communications in the NAS
parallel benchmark suit v2.4.1. This and other results
concerning the OCS compiler work will be reported
in a separate paper.

4.2 Network Adapter with Integrated
Communication Predictor
Combining the OCS and the EPS networks requires
an intelligent NIC. In Figure 10, we illustrate the
various components of a candidate NIC to show that

the various requirements of the OCS could also be
efficiently handled by NIC hardware. It is possible to
move some of these functions back into software in
order to simplify the hardware but at the cost of some
extra processing and time delay. However at this
point we do not know exactly the benefit of having
added functionality in the NIC verses doing it in
software. In Figure 10, the host interface is
represented as a set of directional queues between the
host and the NIC. When point-to-point data is sent, its
destination is used to determine the outgoing queue
that the data is sent through. This simplifies and
unifies the communication library as both networks
utilize the same queues. It also enables run-time
prediction of communication patterns and migration
of communications from one network to the other.
When a Compute node sends a message, it is placed
directly in an outgoing FIFO with the same index as
the destination Compute node. These buffers do not
have to be large nor do they imply significant latency.
Our experiments with FPGAs show that a single FIFO
adds only a single cycle of delay and operate at
greater than 250MHz. Table 2 gives the performance
of an N-destination Queue that is implemented using a
single RAM and a register files for tracking N head
and tail pointers and N fully/empty status bits. A
130nm FPGA was used and achieved over 3 Gbps.
The size of N is expected to scale to well as we lost
only 4MHz per doubling of N. A 65nm ASIC is
expected to scale N to over 4096 at over 10Gbps.
Table 2. Performance of the NIC Queues for a
130nm FPGA (Altera EP1S25-5). ASIC
performance is estimated to be 2.5 to 10x faster.
 Number Destinations per Queue
 16 32 64 128
Area:
 Logic Cells

1439

1988

3939

8010

 (% device) (5.6%) (7.8%) (15.4%) (31.2%)
Memory
 in Bits

65,536

131,072

262,144

524,288

 (% device) (3.4%) (6.7%) (13.5%) (27.0%)
Max MHz 69 67 63 59
Throughput
Gbps

4.4 4.3 4.0 3.8

Latency ns 14 15 16 17

The benefit of using the outgoing N destination Queue
is that they provide details about the traffic pattern

 17/

without requiring additional software layering. By
simply combining the “Empty” signals from each of
the FIFOs into a single bit-vector, the real-time traffic
requirements can be determined. In fact, the FIFOs
can provide one or more “Almost Full” indicators that
can be used to determine the amount of traffic that is
pending. These FIFO status indictors are used by the
Predictor to project the needs of the Compute node(s)
to route communication through the OCS network.

Figure 10. Example NIC with integrated prediction

hardware for the dual OCS and EPS network.
The EPS network, in our candidate NIC, also uses the
FIFO buffers but must first form the data into packets
before it is sent into the EPS network. Even for a
wormhole network, the data must be assigned a
channel and the flits need to be created. For multiple
communications between two compute nodes the
EPS, if it is wormhole routed, must create the header
of the worm. In each switch hop, the destination (or
virtual channel) must be determined before the flit is
routed. Thus, the EPS requires some level of
buffering while the OCS does not. Similarly, the
source of the incoming data from the OCS network is
known a priori as a side effect of establishing the
connection. The EPS data, however, can be from any
other node and thus, the source needs to be sent along
with the data. The flexibility of the EPS network is
very useful but comes at a cost. By using the OCS for
high-bandwidth traffic and by using the EPS for low-
bandwidth and unpredictable traffic, the best of both
mechanisms can be utilized.
The demultiplexer between the FIFOs and networks
determines which network each FIFO will use. The

only requirement for the multi-FIFO block is that it
can read two values concurrently. The Control
Registers are used to store the index of the FIFO(s)
that utilize the OCS network and enable the EPS
network to receive all other data. The simplicity of
this design enable rapid migration of data between the
OCS and EPS networks without placing a burden on
the Compute node and without tightly synchronizing
the NIC’s activities with the Compute node.

4.3 Performance Evaluation
A simplified simulation was used to examine the
performance of communications in a n-processor
system connected using the two networks. The EPS
was taken to be an n×n crossbar switch, E, while the
OCS network consisted of k optical crossbars, O0 , …,
Ok-1. Each node in the system reads communication
events from an input trace file and simulates the
events (for example MPI_Send, MPI_receive,
MPI_bcast, …). Communication events in the trace
file can be separated by a compute(t) event, which
emulates a serial computation of duration t. A trace
file can either be generated synthetically, or obtained
from an application execution.
For this work, we use trace files generated from the
execution of RF-CTH with AMR. Specifically, we
link the application to a special MPI library to
generate, during execution, communication events as
well as the time between the successive executions of
two MPI operations (It should be noted that trace
generation is intrusive and the execution time will be
slightly increased due to the additional time keeping
and the trace generation instructions). The simulation
allows the specification of many system parameters
including those listed in Table 3. The values used in
the simulation are also listed in Table 3.

Table 3. Simulation system parameters.

Parameter Value
Node count 128
Number of OCS planes 0 - 32
Link speed in the OCS 8Gb/s
Link speed in the electronic network 1-10Gb/s
Electronic/optical switch arbitration time 100ns
Connection establishment delay in the OCS 3ms
Connection delay in the electronic network 100ns
Electronic and optical link propagation delay 200ns
Processor operating frequency 1 – 10GHz
Overhead of an MPI_Send or MPI_Receive 5000 cycles

 18/

0.0E+00

2.0E+05

4.0E+05

6.0E+05

8.0E+05

1.0E+06

1.2E+06

1.4E+06

1.6E+06

1.8E+06

2.0E+06

0 8 16 24 32

Number of OCS Planes

A
ve

ra
ge

 M
es

sa
ge

 D
el

ay
 (n

s)

Processor Speed = 2 GHz
Processor Speed = 5 GHz

Processor Speed = 10 GHz

(a) Average message delay

0

500

1000

1500

2000

2500

3000

3500

0 8 16 24 32

Number of OCS Planes

Ru
n-

tim
e

(s
)

Processor Speed = 2 GHz
Processor Speed = 5 GHz

Processor Speed = 10 GHz

(b) RF-CTH run-time

Figure 11. Performance using multiple OCS
planes.

The migration and replacement policies are specified
by writing corresponding modules in the simulator.
The results reported here are for the following two
policies:
Migration policy: Request a connection from s to d

in the OCS when a message larger than 32 bytes is
sent from s to d.

Replacement policy: Least Recently Used – when a
request to establish an OCS circuit from s to d
occurs and all optical ports out of s or all optical
ports into d are occupied by other connections,
then at least one and at most two OCS connections
should be torn-down to allow for the establishment

of the new connection. The connections that have
been least recently used in the OCS are torn-down
to make room for the new connection.

Other potential circuit allocation policies (e.g., least
actively used, or setting up circuits in a run on the
basis of communication traffic in a prior run, among
others) have not yet been evaluated relative to these
policies. Effectiveness of any particular policy may
depend strongly on specific application traffic
patterns and specific system parameters.
Both the application run-time and the average
message delay are reported. In Figure 11, we show
the effect of the number of OCS planes on
performance. The performance improves when the
number of planes, k, increases up to 16. The
improvement beyond k=8 is very small because, as
was shown in Section 3, the number of heavily used
connections in the CTH program rarely exceeds 10.
In Figure 12, the effect of using only a fast electronic
network instead of augmenting a slow electronic
network with an OCS is shown. In order to match the
performance of the dual EPS + OCS, the bandwidth
of the EPS network has to be increased. For example,
if 8 OCS planes are assumed the average message
delay is 0.25ms irrespective of the processor speed
(Figure 11a), and the bandwidth of the electronic
network required to match this performance is
approximately 7Gb/s (Figure 12a).
Further simulation results using UMT2K are shown in
Figure 13 where two classes of systems are compared.
The first type uses fast EPS with no OCS. In this
configuration six fast EPS fat-trees are used. The
second type uses a slow EPS augmented with a
number Ko of optical crossbars, with Ko being varied
between zero and 24. As expected, the performance
improves when the number of optical planes increases
up to 12 planes. Using 24 OCS planes does not
improve the performance much because 12 planes are
enough to support the communication patterns of the
applications. The results also show that using 6 fast
EPS planes is equivalent to using one slow EPS plane
with 12 OCS planes. This simulation was done with
different parameters than those in the previous
example.

Work is in progress on simulating the performance of
other applications.

 19/

0.0E+00

2.0E+05

4.0E+05

6.0E+05

8.0E+05

1.0E+06

1.2E+06

1.4E+06

1.6E+06

1.8E+06

2.0E+06

0 5 10 15 20

Electronic Network Bandwidth (Gb/s)

A
ve

ra
ge

 M
es

sa
ge

 D
el

ay
 (n

s)

Processor Speed = 2 GHz
Processor Speed = 5 GHz

Processor Speed = 10 GHz

(a) Average message delay

0

500

1000

1500

2000

2500

3000

3500

0 5 10 15 20

Electronic Network Bandwidth (Gb/s)

R
un

-ti
m

e
(s

)

Processor Speed = 2 GHz
Processor Speed = 5 GHz

Processor Speed = 10 GHz

(b) RF-CTH run-time

Figure 12. Performance using only a fast electronic
network.

4.4 Handling poor temporal locality
The traffic monitor can be equipped with the
capability of detecting when the communication in a
running application does not exhibit temporal locality
and leads to repeated allocation and de-allocation of
connections in the OCS (thrashing). Upon making this
determination, the migration policy can embed a
given predetermined logical topology in the OCS and
then use multi-hop routing as necessary for the
communications. Possible logical topologies
embeddings onto OCS for multi-hop routing depend
on the number of OCS planes available. This number
is the maximum node degree of the logical topology,
which determines the maximum number of hops. For
example, an n-node system with 6 OCS planes allows

0

2

4

6

8

10

12

14

16

18

4GHz 6GHz 10GHz

CPU Speed

Ru
nt

im
e

(s
)

OCS (x1)
OCS (x6)
OCS (x12)
OCS (x24)
Fast EPS (x6)
Ideal

(a) run-time (512 nodes)

0

50

100

150

200

250

300

4GHz 6GHz 10GHz
CPU Speed

Av
er

ag
e

M
es

sa
ge

 D
el

ay
 (µ

s)

OCS (x1)
OCS (x6)
OCS (x12)
OCS (x24)
Fast EPS (x6)
Ideal

(b) Average message delay (512 nodes)

Figure 13. Simulation results for UMT2K

the embedding of a 3-D torus topology resulting in a
maximum of 35.1 n hops. Or a system having log n
OCS planes allows the embedding of a hypercube
topology and results in a maximum of log n hops.
Finally, it can be shown that the number of hops is
limited to 2 if n OCS planes are available, or
generally k for k n planes. The proof and other details
of this graph expander embedding scheme, is
currently being prepared as a separate paper. Since we
expect to have many OCS planes, relative to the total
number of nodes, we will, in most cases, use only 2
hops to satisfy any communication

 20/

Figure 14. Established circuits for the case of 9

nodes.

We demonstrate the principle of 2-hop connections
using an example of a small system containing 9-
nodes. Figure 14 shows the logical connectivity
between the output NICs and the input NICs of the
nodes that lead to the 2-hop communication. The
node degree of this graph is 3 and thus three OCS
planes are needed to embed this logical topology. It
can be easily shown that a communication can take
place between any output NIC and any input NIC
using at most two hops. For example, although node 1
is not directly connected to node 6, it is connected to
node 5, which is connected to node 6. Hence
communication between node 1 and 6 will take 2
hops, passing through node 5.

5. CONCLUSIONS
A substantial part of the cost of a HPC system is due
to the interconnect. The bulk of interconnects today
use electronic packet switching elements and optical
transceivers that dominate this cost. We propose using
a combination of two networks to provide high
performance at manageable cost.

Our approach is motivated by an empirical analysis of
HPC applications, eleven of which we describe in this
paper. These applications are drawn from a number of
sources and solve a variety of problems. Our analysis
shows that the bulk of the inter-processor
communication (barring collectives) in these
applications is bounded in degree and changes either
very slowly or never. Stated differently, our analysis
indicates that these applications severely underutilize
the switching capability in an electronic packet-
switched interconnect. While the interconnect
provides the capability for every processor to
communicate with every other processor on a per-
packet basis, the applications tend to overwhelmingly
favor a small number of routes. Based on this
observation, we propose the use of two separate

communication mechanisms in HPC systems: a cheap
and power-efficient mechanism for long-lived
transfers of large amounts of data, and another to
accommodate collectives and short-lived data
exchanges. Separating the communication classes in
this manner enables us to target each class with the
most appropriate network structure and technology.

For long-lived bulk data transfers, we use an OCS
network. OCS switches use optics at all elements of
the data path with switching accomplished through
the MEMS-based mirrors. For comparative
bandwidth, an OCS is substantially less expensive but
switches significantly slower than an all-electronic
packet switching network. However, since the circuits
established in the OCS will be changed quite
infrequently, the slower switching speed is not a
performance impediment. We route collectives and
transient communication over a secondary lower-
bandwidth EPS network. With its much higher
switching speed, the secondary interconnect is able to
handle this kind of traffic with low latency. At the
same time, we are able to keep the secondary
interconnect from being bandwidth overwhelmed by
using it for a portion of the traffic.

We have developed a combination of static (compile-
time) techniques and dynamic run-time policies to
enable practical use of the combination of the two
networks. Our experimental compiler is able to
determine long-lived bulk transfers in a number of
applications. Where this works, the compiler inserts
instructions to setup the OCS at application startup,
enabling the use of the OCS without any switching
latency during application execution. In cases where
the static analysis is not enough, we use a run-time
policy that dynamically moves traffic between the
OCS and packet-switched networks. With a simulator
we have evaluated our design and shown that the
combined two networks maintain performance while
being substantially cheaper than an all-electronic
packet switched network.

There are still several open questions which we will
attempt to answer in future work. Issues of cost and
cost scalability are obviously important – as we have
stated, we have not attempted to do a serious analysis
of cost comparison in this paper, since the available
data on component cost trends are still very rough.
The detailed NIC design is a complex enough subject
to warrant a full paper on it's own, but the basic
question – "is such an approach feasible?" may be
answered by pointing the reader to much more

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 7 8

 21/

complex chips designed and operating currently.
More analysis of policies for circuit allocation may
prove useful, as we only show results for one of many
possible implementations in Section 4.3. Finally, the
mechanisms for circuit set-up and/or tear down will
require another level of detailed design, depending on
the exact implementation of the OCS switch.

ACKNOWLEDGEMENTS
This paper is based upon work done in the context of
the PERCS project at IBM, which is supported in part
by the Defense Advanced Research Projects Agency
(DARPA) under Contract No. NBCH3039004. Los
Alamos National Laboratory is operated by the
University of California for the U.S. Department of
Energy under contract W-7405-ENG-36. We are
grateful to Mootaz Elnozahy for his leadership,
support and encouragement, as well as his many good
suggestions throughout this work.

REFERENCES
[1] ADIGA N.R. ET. AL. 2002. “An Overview of the

BlueGene/L Supercomputer”. In Proc.
IEEE/ACM SC02. Baltimore.

[2] ARIDOR, Y., DOMANY, T., GOLDSHMIDT, O,
SHMUELI, E., MOREIRA, J., AND STOCKMEYER,
L. 2004. “Multi-Toroidal Interconnects: Using
Additional Communication Links To Improve
Utilization of Parallel Computers”. In Proc. 10th
Workshop on Job Scheduling Strategies for Parallel
Processing, New York.

[3] ARIDOR, Y., DOMANY, T., GOLDSHMIDT, O.,
MOREIRA, J. AND SHMUELI, E. 2005. “Resource
Allocation and Utilization in the BlueGene/L
Supercomputer”, IBM Journal of Research and
Development, 49(2/3), pp. 425-436.

[4] BELL, R., MALONY, A., AND S. SHENDE. 2003.
"A Portable, Extensible, and Scalable Tool for Parallel
Performance Profile Analysis". In Proc. Europar,
LNCS 2790, Springer, Berlin, pp. 17-26.

[5] BLITZ, C.M., AND LIPSCOMB, W.H. 1999. “An
Energy-conservative Thermodynamic Model of Sea
Ice”. J. Geophysics Research, 104(15), pp. 699-677.
http://climate.lanl.gov/

[6] CAIN, H.W., MILLER, B.P., WYLIE, B.J.N. 2002.
“A Callgraph-based Search Strategy for Automated
Performance Diagnosis”. Concurrency and
Computation: Practice and Experience, 14, pp. 203-
217.

[7] CAPPELLLO, F., AND GERMAIN, C. 1995.
“Toward High Communication Performance Through
Compiled Communications on a Circuit Switched

Interconnection Network”. In Proc. Int. Symp. On
High Performance Computer Architecture, pp. 44-53.

[8] CHAMBERLAIN, R., FRANKLIN, M., AND BAW,
C. S. . 2002. “Gemini: An optical interconnection
network for parallel processing”. In IEEE Transactions
on Parallel and Distributed Processing, 13(10), pp.
1038-1055.

[9] COLLINS, W. D., RASCH, P.J., BOVILLE, B.A.,
HACK, J.J., MCCAA, J.R., WILLIAMSON, D.L.,
KIEHL, J.T., BRIEGLEB, B., BITZ, C., LIN, S.J.,
ZHANG, M. AND DAI, Y. 2004. “Description of the
NCAR Community Atmosphere Model (CAM 3.0)”.
NCAR Tech. Note NCAR/TN-464+STR

[10] CRAWFORD, D.A., TAYLOR, P.A., AND HERTEL,
E.S. 2001. “Adaptive Mesh Refinement in the CTH
Shock Physics Hydrocode”. In Proc. New Models and
Hydrocodes for Shock Wave Processes in Condensed
Matter, Paris, France.

[11] DEFANTI, T., BROWN, M., LEIGH, J., YU, O., HE,
E., MAMBRETTI, J., LILLETHUN, D., AND
WEINBERGER, J. 2003. “Optical switching
middleware for the OptIPuter”. IEICE Transact.
Commun. E86-B, 8, pp. 2263-2272.

[12] DIETZ, H.G., AND MATTOX, T.I. 2000. "Compiler
Techniques For Flat Neighborhood Networks". In
Proc. 13th Int. Workshop on Languages and Compilers
for Parallel Computing (LCPC00), Yorktown Heights,
New York.

[13] DING, Z., HOARE, R., JONES, A., LI, D., SHAO, S.,
TUNG, S., ZHENG, J., AND MELHEM, R. 2005.
“Switch Design to Enable Predictive Multiplexed
Switching in Multiprocessor Networks”. In Proc. 19th
IEEE Int. Parallel & Distributed Processing Symp.,
Denver, CO..

[14] EBERLE, H. AND NILSM GURA N., 2002.
"Separated High-bandwidth and Low-latency
Communication in the Cluster Interconnect Clint”. In
Proceedings of the IEEE/ACM Supercomputing
Conference, Baltimore.

[15] GRIPP, J., DUELK, M., SIMSARIAN, J.,
BHARDWAJ, A., BERNASCONI, P., LAZNICKA,
O., ZIRNGIBL, M., AND STILIADIS, D., 2003.
"Optical switch fabrics for terabit-class routers and
packet switches". J. Optical Networking 2(7), pp. 243-
254.

[16] GUPTA, V. AND SCHENFELD, E. 1994.
“Combining Message Switching with Circuit
Switching in the Interconnection Cached
Multiprocessor Network”. In Proc. IEEE Int.
Symposium on Parallel Architectures, Algorithms and
Networks - ISPAN HORIGUCHI, S.(ed.), pp.143-150.

[17] GUPTA V. AND SCHENFELD, E. 1995. “Task
Graph Partitioning and Mapping in a Reconfigurable

 22/

Parallel Architecture”. Parallel Processing Letters 5(4),
pp. 563-574.

[18] HABATA, S., UMEZAWA, K., YOKOKAWA, M.,
AND KITAWAKI, S. 2004. “Hardware system of the
Earth Simulator”. Parallel Computing, 30(12), pp.
1287-1313.

[19] HALLIWELL, G.R. 2004. “Evaluation of Vertical
Coordinate and Vertical Mixing Algorithms in the
Hybrid Coordinate Ocean Model (HYCOM)”, Ocean
Modeling, Vol. 7, pp. 285-322.

[20] HEMENWAY, R., GRZYBOWSKI, R.,
MINKENBERG, C., AND LUIJTEN, R., 2004.
"Optical-packet-switched interconnect for
supercomputer applications". J. Optical Networking
3(12), pp. 900-913.

[21] HOISIE, A., LUBECK, O., AND WASSERMAN, H.J.
2000 “Performance and Scalability Analysis of
Teraflop-Scale Parallel Architectures using
Multidimensional Wavefront Applications”. Int. J. of
High Performance Computing Applications, 14(4), pp.
330-346.

[22] JONES, P.W. 1997. “The Los Alamos Parallel Ocean
Program (POP) and Coupled Model on MPP and
Clustered SMP Computers”. In Making its Mark – The
Use of Parallel Processors in Meteorology,
HOFFMAN, G.R. (Ed), World Scientific Publishing.
http://climate.lanl.gov/

[23] KERBYSON, D.J., ALME, H.J., HOISIE, A.,
PETRINI, F., WASSERMAN, H.J., AND GITTINGS,
M.L. 2001. “Predictive Performance and Scalability
Modeling of a Large-scale Application”. In Proc.
IEEE/ACM Supercomputing, Denver, CO.

[24] KERBYSON, D.J., AND, BARKER, K.J. 2005.
“Automatic Identification of Communication Patterns
via Templates”. In Proc. ISCA Int. Conf. on Parallel
and Distributed Computing Systems.

[25] KERBYSON, D.J., AND JONES, P.W. 2005 “A
Performance Model of the Parallel Ocean Program”.
Int. J. of High Performance Computing Applications,
19(13).

[26] LEISERSON, C.E., et al. 1992. “The network
architecture of the Connection Machine CM-5”, In
Proc. ACM Symp. Parallel Algorithms and
Architectures, pp. 272–285.

[27] MATHIS, M., AND KERBYSON, D.J. 2004.
"Performance Modeling of Unstructured Mesh Particle
Transport Computations", In Proc. PMEO-IPDPS,
Santa Fe, NM.

[28] OLIKER, L., CANNING, A., CARTER, J., SHALF,
J., SIMON, H. ETHIER, S., PARKS, D., KITAWAKI,
S., TSUDA, Y., AND SATO, T. 2005. “Performance
of UltraScale Applications on Leading Vector and
Scalar HPC platforms”. to appear in the Journal of
Earth Simulator.

[29] PARDO, F., ET. AL. 2003. “Optical MEMS devices
for telecom systems”, Proc. of SPIE , v 5116 II, pp.
435-444.

[30] SCOTT, S.L. 1996. “Synchronization and
communication in the T3E multiprocessor”, In Proc.
ASPLOS-VII, Sept. 1996.

[31] SIVARAM, R., STUNKEL, C.B., AND D. K.
PANDA. 1997. “A reliable hardware barrier
synchronization scheme”. in Proc. of the 11th Int.
Parallel Processing Symp., Geneva, Switzerland, pp.
274-280.

[32] SPOONER, D.P., AND KERBYSON, D.J. 2005.
“Performance Feature Identification by Comparative
Trace Analysis”, to appear in Future Generation
Computer Systems, Elsvier.

[33] VEERARAGHAVAN, M., ZHENGA, X., LEEB, H.,
GARDNERC, M., AND FENGC, M. 2003.
“CHEETAH: circuit-switched high-speed end-to-end
transport architecture”. Proceedings of the SPIE,
Volume 5285, pp. 214-225.

[34] YUAN, X., MELHEM, R., AND R. GUPTA. 1996.
"Compiled communication for All-optical TDM
Networks". In Proc. IEEE/ACM Supercomputing,
Pittsburgh, PA.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

