
UsingMultirail Networksin High Performance
Clusters

���
SalvadorColl, EitanFrachtenberg, FabrizioPetrini,

Adolfy HoisieandLeonidGurvits
CCS-3Modeling,Algorithms,& InformaticsGroup

Computer& ComputationalSciencesDivision
Los AlamosNationalLaboratory

{scoll,eitanf,fabrizio,hoisie,gurvits}@lanl.gov

Abstract

Usingmultiple independentnetworks(alsoknown asrails) is anemerging tech-
nique to overcomebandwidthlimitations and enhancefault toleranceof current
high-performanceparallelcomputers.In this paperwe presentandanalyzevarious
algorithmsto allocatemultiple communicationrails, including staticanddynamic
allocationschemes.An analyticallower boundon thenumberof rails requiredfor
staticrail allocationis shown. We alsopresentanextensive experimentalcompar-
ison of the behavior of variousalgorithmsin termsof bandwidthandlatency. We
show that striping messagesover multiple rails can substantiallyreducenetwork
latency, dependingon averagemessagesize,network load,andallocationscheme.
The comparedmethodsincludea staticrail allocation,a basicround-robinrail al-
location,a local-dynamicallocationbasedon local knowledge,anda dynamicrail
allocationthat reservesboth communicationendpointsof a messagebeforesend-
ing it. The last methodis shown to performbetterthantheothersat higherloads:
up to 49% betterthanlocal-knowledgeallocationand37% betterthanthe round-
robin allocation. This allocationschemealsoshows lower latency andit saturates
at higherloads(for messageslong enough).Most importantly, this proposedallo-
cationschemescaleswell with thenumberof rails andmessagesizes.In addition
we proposea hybrid algorithmthatcombinesthebenefitsof the local-dynamicfor
shortmessageswith thoseof thedynamicalgorithmfor largemessages.

Keywords: CommunicationProtocols,High-PerformanceInterconnectionNetworks,
PerformanceEvaluation,Routing,CommunicationLibraries,ParallelArchitectures.�

A shorterversionof this paperandresultsfor thestaticrail allocationcanbefoundin [3] and[2].�
The work wassupportedby the U.S. Departmentof Energy throughLos AlamosNationalLaboratory

contractW-7405-ENG-36

1

1 Introduction

System-interconnectionnetworkshavebecomeacritical componentof computingtech-
nology, with a direct impacton the design,architecture,anduseof high-performance
parallelcomputers.Indeed,not only thesheercomputationalspeeddistinguisheshigh-
performancecomputersfrom desktopsystems,but alsothe efficient integrationof the
computingnodesinto tightly coupledmultiprocessorsystems.Network adapters,switches,
device-drivers and communicationlibraries are increasinglybecomingperformance-
critical componentsin modernsupercomputers.

Oneapproachto building large-scalesupercomputers,with asmany asthousandsof
processors,is to usesharedmemorymultiprocessors(SMPs)asbuilding blocks.In such
machines,it is very importantto keeptheratio betweencomputingpower andcommu-
nicationcapabilityproperlybalanced.Onesolutionto the issuesof limited bandwidth
availability in network connections,andof fault tolerance,is theuseof multiple paral-
lel networksor "rails". This techniqueimplies the utilization of severalnetwork inter-
facesperSMPnode,attachedto independentI/O buses.To thebestof our knowledge,
very little attentionhasthus-farbeengivenin theliteratureto studiesof communication
protocols,performancecharacteristics,fault tolerance,and implementationof system
softwareandlibrariesfor multiple rails.

Aside from beinga challengingscientificendeavor, theanalysisof multirailednet-
workshasdirectpracticalimplicationsaswell. ThePittsburgh SupercomputingCenter
(PSC)1, themostpowerful supercomputerin theworld for unclassifiedresearchat this
time, is interconnectedwith two distinct network rails. Los Alamos National Labo-
ratory and Compaqare currently developing an extreme-scale,multirailed clusterof
SMPs,the 30TopsASCI Q machine2. Both the PSCandthe Q-machinearebasedon
theQuadricsnetwork (QsNet)3, which consistsof two building blocks,a 64bit/66MHz
PCI card with a programmablenetwork interfacecalled Elan [10] and a low-latency
high-bandwidthcommunicationswitch calledElite [11]. Elites canbe interconnected
in a fat-treetopology[6]. A recentperformanceevaluationof theQsNetshows that the
network performanceis seriouslylimited by the PCI bus [8]. In fact, the network can
deliveralmost���	� MB/secatuser-level (�	�	� MB/secof raw bandwidth),but thePCI im-
plementationcansustainonly �
�
� MB/sec,usingthemostefficient PCI chipseton the
market. Thepresenceof bidirectionaltraffic furtherdegradesperformance,limiting the
aggregatecommunicationbandwidthto �
�
� of the unidirectionalbandwidthon most
PCI chipsets(Intel 840,ServerworksHe andLE, CompaqWildfire). Thoughthe next
generationof thePCI interface,calledPCI-X, will doublethenominalperformance,the
new generationof QsNetwill alsodoubleits performance,so this issuewill not disap-
pear. Thesameproblemis alsolikely to appearwith Infiniband,wherehigh bandwidth
betweennodescanbe achievedby groupingtogetherseveralcommunicationchannels
[1]. For example,thefirst implementationsof Infinibandwith theMcKinley processor
will bebasedontheIntel 870chipset.Thischipsetprovidesa4X Infinibandconnection
at1GB/secwhich is equalizedto thebandwidthof theI/O busin a singledirection.

In this paperwe presentthe basicpropertiesof a multirailed network andanalyze
four approachesto multirail communication.Theseapproachestry to minimize,or elim-

1http://www.psc.edu.
2http://www5.compaq.com/alphaserver/news/supercomputer_0822.html
3http://www.quadrics.com

2

inate,two distincttypesof congestion.

1. Conflictsat the destinationnode. Multiple messagescan be sent to the same
destinationfrom differentsourcesat the sametime. For example,if we split a
messagein two equallysizedchunksandwe sendthosechunkson two distinct
rails, we expect to cut in half the delivery time of the whole message.But, if
anothermessageis sentto the samedestinationon oneof the rails at the same
time, thenthereis no performanceadvantagein usingmultiple rails.

2. Conflictson theI/O bus. Therecipientof a messagecanpotentiallyusethesame
network interfaceto sendanothermessagein theotherdirection.Again, this can
causea substantialperformancedegradation4 .

In thefirst approach,calledstaticrail allocation,eachnetwork interfacecaneithersend
or receive messages,and its direction is determinedat initialization time, thuselimi-
natingall conflictson the I/O bus. Staticallocationposesthe problemof connectivity
betweennodes:we wantto have a directpathin thenetwork betweenany possiblepair
of nodes.Theuseof intermediatenodescouldseriouslydegradethelatency achievedby
zero-copy, user-level communicationprotocols,akey featureof mosthigh-performance
networks. In Section2 we show thataddressingthis problemrequiresa large,possibly
prohibitive numberof rails. Also, the experimentalresultsshow that the performance
obtainedthis way is sub-optimal.

We addresstheseproblemswith local-dynamicallocation. In this scheme,rails
areallocatedin both directions,using local informationavailableon the senderside.
Messagesaresentoverrails thatarenotsendingor receiving othermessages,potentially
stripingamessageovermultiplerailswhenpossible.Sincethisalgorithmusesonly local
information,thereis no guaranteethatthetraffic will beunidirectional,onbothends.

Thedynamicallocationschemetriesto reservebothendpointsbeforesendingames-
sageandeliminatesbothtypesof conflicts.In its corethereis asophisticateddistributed
algorithmthatensuresunidirectionaltraffic atbothendsandavoidslivelocks,potentially
generatedby multiple requestswith acyclic dependency. Theimplementationof thisal-
gorithm requiressomeprocessingpower in the network interfacecard (NIC), which
needsto processincomingcontrolpacketsandperformthereservationprotocolwithout
interferingwith the processorsin the SMP. Fast responsetime in the NIC is essential
to limit theoverheadof this protocolfor theprotocol’soverheadto bejustified. This is
the caseof the QsNet[8], which is equippedwith a threadprocessorthat canreadan
incomingpacket,dosomebasicprocessingandsenda reply in asfew as ����� .

Finally anotherdynamicallocationschemeis proposed,calledhybrid, whichallows
bidirectionality for small messages,thus minimizing the protocol overheadfor fine-
grainedcommunication.In thepresenceof largemessages,thealgorithmreservesboth
endpoints,maintainingunidirectionaltransmissionon bothendsasmuchaspossible.

The experimentalresults,obtainedusing a circuit-level simulatorof the network
and network interface,explore the performanceof theseallocationalgorithmsunder
several traffic loadsandmessagesizes.Theseresultsshednew light into thebenefitof
usingmultiplenetwork railsandexposeseveraltrade-offs in thedesignof theallocation
algorithms.

4All thealgorithmspresentedin thepapercanbeeasilygeneralizedto thesimplercasewherebidirectional
traffic canbeefficiently handledby thenetwork interface.

3

Therestof this paperis organizedasfollows: we startwith thedescriptionandfor-
mal analysisof staticrail allocationin Section2. Section3 presentsthe local-dynamic
allocationandSection4 offers a descriptionof the dynamicandhybrid allocationap-
proaches.Thedetailsof theexperimentalevaluationperformedaredescribedin Section
5 andtheresultsobtainedarepresentedin Section6. Finally, weconcludein Section7.

2 Static Allocation

In this sectionwe describethe static allocationof network interfaces,in which each
node-to-railconnectionis exclusively a transmitteror a receiver. We obtainanalytically
the optimal allocationpatternandconstructan algorithmfor generatingit. The terms
network interfaceandrail areusedinterchangeablythroughoutthis section.

2.1 Theoretical bound

The questionwe aretrying to answeris, what is the maximumnumberof processing
nodesthatwe caninterconnectusinga givennumberof rails, underthefollowing con-
straints:

1. Eachnodecaneithertransmitor receiveonagivenrail but notboth.Thisensures
unidirectionalaccessto theI/O bus.

2. Eachnodecantransmitto everyothernodewithout passingthroughintermediate
nodes.

3. Railsareindependent:messagescannotpassfrom onerail to another.

Let usrepresentastaticallocationusingabinarymatrixwherecolumnsrepresentnodes
androwsrepresentrails,sothatavalueof ’1’ in the ����� entrymeansthatnodej transmits
onrail i, anda ’0’ meansthatnodej receivesonrail i. Figure1 depictsstaticallocations
examplesandtheirequivalentallocationmatrices.In theexampleshown in Figure1(a),
rail 0 canbeusedfor sendingby node0 andreceiving by node1. Sincetheallocation
is static,onemorerail is requiredto allow communicationfrom node1 to node0. As
canbeseentwo railsaresufficient to ensurefull connectivity betweentwo nodes.When
consideringfour nodes,at leastfour railsarerequiredto ensurefull connectivity. Figure
1(b)showsonepossibleallocation,and1(d) thecorrespondingallocationmatrix.

Ourgoalis to maximizethenumberof nodesn thatcanbefully connectedby r rails,
meetingthe requirementslisted above. A simpleboundof �������� , canbe obtained
with thestaticallocationdescribedin Algorithm 1. While this allocationis simple,and
clearly satisfiesthe constraints,it is not optimal. The optimality is containedin the
following proposition:

Proposition 1. Givenr networkrails, thenumberof nodesn that canbestatically
allocatedto theserails with unidirectionalcommunicationin thenetworkinterfacecard
(NIC) andfull nodeconnectivitycannotexceed� � ! "#%$&
')((1)

4

Rail 1 Rail 2 Rail 3Rail 0

0 1 2 3

Rail 0

0 1 0 1

Rail 1

1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1

1 0
0 1

0 0 01 2 3 1 2 3 1 2 3

(b) Four rail allocation for four nodes(a) Two rail allocation for two nodes

(d) Allocation matrix for four nodes(c) Allocation matrix for two nodes

Figure1: Simplestaticallocationexamplesfor 2 (a)and4 (b) nodes.Rectanglesdenote
networks(rails); circlesrepresentnodesandarrowsdenotetheallocationof eachrail to
eachnodeaseithertransmitteror receiver. The correspondingallocationmatrixesare
shown, respectively, in (c) and(d).

Algorithm 1 : Staticrail allocationwith �+*-,	. & � rails.
procedure log_rail_alloc
begin

for � = 0 to / 0�1 �325476 do
begin

allocate nodes on rail

& � in consecutive groups of

&98
, alter-

nating
between transmitters and receivers, starting with the transmit-

ters.
end
for � = 0 to / 0�1 �325476 do
begin

allocate nodes on rail 2 �;:6 in consecutive groups of

&98
, alternating

between transmitters and receivers, starting with the re-
ceivers.

end
end

5

Proof. Eachnodecanuseany givenrail for eithertransmittingor receiving, but not
both (unidirectionalrequirement).Let a binaryvectorrepresentthestaticallocationof
nodeson a rail: thevector’s ith entry is 0 if the ith nodereceiveson this rail and1 if it
transmitson it. We canrepresentthe staticallocationof the entiresystemasa binary
matrix A with r rows,eachrepresentingonerail, andn columns,eachrepresentingone
node. Let � ��� denotethe valueat row i andcolumn j of A, that is, the role allocated
to the jth nodeon the ith rail. The problemcanthusbe formalizedasdeterminingthe
maximumnumberof columnsn of a binarymatrix with r rows for which thefollowing
propertyholds:<�=?>A@CB D
E
FGF �+H >
=JIK @MLONQPCBRD	E	F-F " HS� F T%F �VUXW K � > ��UXY K E (2)

For eachmatrix columnj let Z � bethesetof indicesi for which � �[� K E :Z\� K D
E �^]_� "a` �V�[� K E H . Notethattheproperty(2) of amatrixA is equivalentto the
following property:

<b=�>A@MBcD
E
FGF �+H >
=JIK @ML Z Wed Z Y (3)

Theequivalencestemsfrom thefactthatif (3) doesn’t hold, i.e.NQ=?>A@MB D
E
FGF �+H >
=JIK @ � F T ZfWegSZfY
thenfor every row

PhBiD	E
FGF " H for which � UXW K E we have also � UXY K E so(2) cannot
hold. In theotherdirection,if (3)holdsthenfor everytwo columns

=�>�@MB D	E	F-F �+H >3=jIK @
therewouldhaveto beat leastonerow

PCBRD	E	F-F " H for which ��UXW K � , �VUXY K E , or else
either ZfWkg�Z�Y or Z�Ylg�ZfW F Themaximumnumberof columnsn for a matrix A with
theproperty(3) is givenby Sperner’s lemmato be(1). A shortproof of this lemmacan
befoundin [7]. m
2.2 Allocation algorithm

We proposea constructivealgorithmto allocater rails to n nodesfor any givenr andn
thatsatisfies(1). This algorithmis simpleto implementandis optimal in thesensethat
it canallocaterails for all thenodesevenwhentheboundis tight. Themainideabehind
it is to find n differentbinary vectors(representingthe rail transmit/receive allocation
for a singlenode),eachhaving exactly n $&�o 1’s in them.Thenumberof distinctvectors
with this propertyis ! "# $&
')(
sothereis a sufficient numberof vectorsto allocatefor n nodes.Also any two different
vectorscontainingthe samenumberof 1’s satisfycondition(3), so by inferencethese
vectorssatisfytherequirement(2). Any enumerationthatproducesthedifferentvectors
canprovide thesevectors. For example,stringscan be enumeratedby lexicographic
order(for

" K � we couldhave 0011,0101,0110,1001,1010,1100). Anothersimple
procedureto enumeratesuchvectorsis describedin Algorithm 2.

Figure 2 shows the relationshipbetweenthe numberof nodesand the numberof
rails requiredto supportthemaccordingto our requirements,usingthe two allocation
algorithmsdescribed.An exampleallocationusingAlgorithm1 is depictedin Figure
3. We notethat a maximumof 8 nodescanbe allocatedusing6 rails. Figure4 is an

6

Algorithm 2 : Optimalstaticrail allocation.
{ build_rail_vectors is a recursive procedure that runs until n binary

vectors of length r are output (n is the number of nodes and r is
the number of rails), each representing an allocation of a single
node. The procedure tries to allocate a 1 and then 0 for each vector
location, and backtracks whenever a vector is completed. It should
be first called from outside with the following parameters:
build_rail_vectors (empty_vector, r, int(r/2))

}
Procedure build_rail_vectors
Input: vector being built (current_vector),

rails left to allocate (rails_left),
ones left for this vector (ones_left)

begin
if n vectors were output then return { Ending condition met -

allocated for all nodes }

if rails_left <= 0 then { No. more rails to allocate means that - }
output current_vector { the current vector (node) is completed. }

else
begin { Still have rails to allocate }
if ones_left > 0 then { Try to allocate a 1 if any left }

build_rail_vectors (current_vector appended with 1,
rails_left - 1,
ones_left - 1)

if (rails_left - ones_left) > 0 then { Try to allocate a 0 -
if any left }

build_rail_vectors (current_vector appended with 0,
rails_left - 1,
ones_left)

end
end

5

10

15

20

25

4 16 64 256 1024 4096

ra
ils

nodes

optimal allocation
2 log2 allocation

Figure2: Requiredrails asa functionof thenumberof nodesfor bothstaticallocation
algorithms.

7

1 0 1 0 1 0 1 0
1 1 0 0 1 1 0 0
1 1 1 1 0 0 0 0
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1

Figure3: Exampleallocationfor 6 rails and8 nodesusingAlgorithm 1.

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0
1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0
0 1 0 0 1 0 0 1 1 0 1 0 0 1 1 0 1 1 0 1
0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1
0 0 0 1 0 0 1 0 1 1 0 0 1 0 1 1 0 1 1 1

Figure4: Optimalallocationmatrix for 6 rails and20nodescreatedusingAlgorithm 2.

exampleof anoptimalallocationmatrix createdby Algorithm 2 for 20 nodeson 6 rails
(20nodesis themaximumfor 6 rails). As it canbeseen,thestaticneedsa largenumber
of rails to fully connecta givennumberof nodes.

3 Local Dynamic Allocation

With the dynamicallocationschemes,the direction in which eachNIC is usedby its
nodechangesdependingon thecommunicationrequirements.This allows to overcome
thehighrail requirementof thestaticallocationpresentedaboveandcanmakebetteruse
of network resources.Unlike staticallocation,dynamicallocationdoesnot predefinea
communicationdirectionfor railswhile still takingmeasuresto minimizetheamountof
actualbidirectionaltraffic on a link.

In this section,a dynamicalgorithmbasedonly on local information(thatavailable
at the sourcenode)is proposed.It canbe appliedto network configurationswith any
numberof rails. Severaldesirablefeaturesareaddressednamely, minimizationof bidi-
rectionaltraffic overthenetwork interface,loadbalancingamongrails,andhighnetwork
utilization. Thelocal-dynamicalgorithmis usedby eachprocessto sendamessageover
thenetwork andis designedto stripemessagesover multiple rails. Furthermore,when
sendinga message,it only selectsNICs that are available. Thus, a sendtransaction
will not producebidirectionaltraffic in thesourcebusunlessa messagereceptionstarts
beforethesendtransactioncompletes.

Algorithm 3 shows the local-dynamicscheme.The rail allocationpolicy selectsa
subsetZ of the setof free rails p for sendinga message.All rails in Z arethenused
for sendingthe message.The algorithmconsidersa rail asfree if it is not sendingor
receiving. The local-dynamicalgorithmusesa datastructure(NStatus) which contains

8

Algorithm 3 : LocalDynamicAllocation
Procedure Local_Dynamic_Allocation
Input: message (M), destination node (dest), striping ratio (str_r)
begin

repeat
F q {n | Nstatus[n]==FREE}
S q Select_Tx_NICs(F, str_r)

until r F st�uXv
send M to dest using NICs in S

end

thestatusof eachNIC in a specificnode.Thestateis updatedby theNICs andcanbe
RESERVED or FREE.Thesubsetof freeNICswhichis selecteddependsonthedesired
stripingratio. Thisparameterfixesthenumberof freerailswhichis usedto sendasingle
message(stripedin the appropriatenumberof fragments).Its valuerangesbetween0
(only onerail is selected)and1 (all the availablerails arechosen).The striping ratio
is handledwith the Select_Tx_NICsfunction, which employs a round-robinalgorithm
to ensurefairnesswhenselectinga subsetof thefreeNICs. Theallocationof theNICs
startsat thefirst freeNIC just pastthelastoneallocatedin theprevioustransaction.

4 Dynamic Allocation

Thedynamicallocationalgorithmcollectslocal- andremote-stateinformationfrom the
NICs for every communicationoperation. Its main goal is to guaranteethat both the
sendingandthereceiving sidearefreebeforeinjectinga message.This ensuresunidi-
rectionaltraffic at bothends.

In thedynamicallocationalgorithm,weusetwo typesof communicatingprocesses.
Thefirst, thePE(processingelement)process,is integratedwith theunderlyingcommu-
nicationlibrary andis run atuserlevel by all theprocessesof aparalleljob. Thesecond
runson the NIC processorsandhandleslocal andremoterequests.It shouldbenoted
thatthis distributedalgorithmrunson everyPEandNIC in thecluster.

4.1 PE process

This process,shown in Algorithm 4, runson the PEsandis invoked whena message
is sent. Rail reservation is employedprior to sendingso that the network interfacesat
sourceanddestinationarededicatedto unidirectionaltraffic at bothends.This reserva-
tion is performedby thesenderin thefollowing way: if local NICs areavailable,each
requestis temporarilyassignedto all theavailableNICs. ThenaRequestTo Send(RTS)
is sentto thedestinationNICs (onedestinationNIC for eachsourceNIC) to checkfor
availability andreservethem.DestinationNICsreplywith aClearTo Send(CTS)if free
anda NegativeAcknowledgment(NACK) otherwise. Oncethe setof availablepaths
(rails) is known at the senderside,anotherselectionis done(by the Select_Tx_NICs
function)in orderto choosetheactualsetof rails for sending,basedonthedesiredstrip-
ing ratio. Rails initially allocatedthatarenot eventuallyusedarefreedby sendingan
ABORT command.Whenthemessageis successfullydelivered,thedestinationprocess
sendsa local ACK to its NIC, which on its turn forwardsa remoteACK to the source
NIC. A round-robinalgorithm is usedto guaranteea fair selectionof NICs. Finally

9

Algorithm 4 : DynamicAllocation (PEprocess)
Procedure Dynamic_Allocation_PE
Input: message (M), destination node (dest), striping ra-
tio (str_r)
begin

repeat
F w {n | Nstatus[n]==FREE}
send local_RTS to the NICs in F
Wait until all remote NICs reply or a timeout expires
A w {The set of NICs that replied with a CTS}

until x A yz+{}|
S w Select_Tx_NICs(A,str_r)
Deallocate all NICs in A ~ S, sending an ABORT.
send M to dest using NICs in S

end

Req

Free
NICs

dest
NICs

Free
NICs

Req

tim
e

Processor ProcessorNetwork

RTS

CTS, NACK

NICs NICs

NICs

Free

Free

Select

CTS

NACK

NIC

NIC

NICs
dest

RecvABORT

MESSAGE

Figure5: DynamicallocationoperationwhenselectingmorethanoneNIC.

the messageis striped,if possible,and sentover the selectedset of NICs. A visual
representationof thealgorithmis depictedin Figure5.

4.2 NIC Process

This process,shown in Algorithm 5 andTable1, runson the NIC andhandlesthe re-
questsissuedby localandremoteprocessors.As in thelocal-dynamicalgorithm,weuse
adatastructure(NStatus) containingthestatusof eachNIC in agivennode.In thiscase
thestatus,which is only updatedby theNICs,canbeoneof thefollowing:� FREE- theNIC is available.� RESERVED - theNIC is reservedby alocal requester, while trying to allocatethe

destinationNIC.

10

Event\Status Free Receiving Sending Reserved Receiving & Out_RTS
LocalRTS RemoteRTS LocalNACK LocalNACK LocalNACK LocalNACK

Reserved Receiving Sending Reserved Receiving & Out_RTS
LocalACK RemoteACK RemoteACK

Free Reserved
LocalABORT RemoteABORT

Free
RemoteRTS RemoteCTS RemoteNACK RemoteNACK – RemoteNACK

Receiving Receiving Sending call livelock_avoidance Receiving & Out_RTS
RemoteABORT – –

Free Reserved
RemoteCTS LocalCTS RmtABORT & Lcl NACK LocalCTS

Sending Receiving Sending
RemoteACK –

Free
RemoteNACK LocalNACK LocalNACK LocalNACK LocalNACK LocalNACK

Free Receiving Sending Free Receiving

Table1: Dynamicallocation- NIC processstatetable.Thefirst row in eachcell repre-
sentsthemessage(s)to besentandthesecondrow representsthenew state.

Event\Status Reserved& Livelock

LocalWinner Send:RemoteNACK; c=c-1

Reserved

RemoteWinner Send:RemoteCTS;c=c+1

Receiving & Out_RTS

Table2: Livelockavoidancestatetable.� RECEIVING- theNIC is receiving a message.� RECEIVINGandOut_RTS- theNIC is receiving amessageandhasanoutstand-
ing RTS message.� SENDING- theNIC is sendingamessage.

WhenaremoteRTS is receivedandtheNIC is free,theNIC is assignedto therequester
andaCTSis issued.Therequestercaneitherusethereservedpathto sendamessageor
abortit. If theNIC is not free,a NACK is sentto therequester.

With regardto thelocal requests,if a local RTS is receivedandtheNIC is free,it is
assignedto thelocal requesterandaremoteRTSis sentto thedestinationNIC. If aCTS
is receivedfrom theremoteNIC (thepathhasbeengranted),a local ACK is sentto the
local requesterthatdecideswhetherto usethereservedpath(sendinga message)or to
dismissit (sendinganABORT). Thatdependson theappliedstripingratio asstatedin
4.1.

This procedurecanlivelockif a cyclic dependency is establishedbetweendifferent
NICs. As an example,let us supposethat eachNIC in Figure6(a) sendsa requestto
anotherNIC so that a cycle of dependenciesis generated.In this scenario,eachNIC
receivesa requestwhile having an outgoingrequestpending.Consequently, usingthe
algorithmdescribedabove, every NIC sendsa NACK (theNICs arebusyasthey have
outgoingpendingrequests)andthenall threeNICs retry theconnection.This leadsto a
livelockif no othermechanismis implemented.

In orderto dealwith this problem,a livelock-avoidancemechanismhasbeendevel-
opedandincludedin Algorithm 6. For thesake of clarity, this mechanismis shown in

11

Algorithm 5 : DynamicAllocation (NIC process)
Procedure Dynamic_Allocation_NIC
begin

NStatus[i] w FREE
counter w 0 {for livelock avoidance}
while TRUE { repeat forever }

case event of
local_RTS:

if (NStatus[i]==FREE) then
NStatus[i] w RESERVED
send RTS to remote node

else
send NACK to local process

remote_CTS:
if ((NStatus[i]==RESERVED) OR (NStatus[i]==FREE)) then

NStatus[i] w SENDING
send CTS to local process

else if (NStatus[i]==RECEIVING) then
send NACK to local process
send ABORT to remote node

remote_RTS:
if (NStatus[i]==FREE) then

NStatus[i] w RECEIVING
send CTS to remote requester

else if (NStatus[i]==RESERVED) then
call livelock_avoidance

else
send NACK to remote requester

local_ACK:
if (NStatus[i]==RECEIVING) then

NStatus[i] w FREE
else if (NStatus[i]==RECEIVING AND Outstand-

ing_RTS) then
NStatus[i] w RESERVED

send ACK to remote requester

remote_ACK:
if (NStatus[i]==SENDING) then

NStatus[i] w FREE

remote_NACK:
if (NStatus[i]==RESERVED) then

NStatus[i] w FREE
send NACK to local process

else
send NACK to local process

local_ABORT:
if (NStatus[i]==SENDING) then

NStatus[i] w FREE
send ABORT to remote requester

remote_ABORT:
if (NStatus[i]==RECEIVING AND Outstanding_RTS) then

NStatus[i] w RESERVED
else if (NStatus[i]=RECEIVING) then

NStatus[i] w FREE
end

12

NIC−i

NIC−j NIC−k NIC−kNIC−j

NIC−i

NIC−kNIC−j

NIC−i
RTS

RTS

RTS

NACK
NACK

NACK

No Path Reserved

(a)

NIC−kNIC−j

NIC−i

NIC−kNIC−j

NIC−i

NIC−kNIC−j

NIC−i
RTS

RTS

RTS

ABORT

Path Reserved

CTS
CTS

NACK
local_prio=2

remote_prio=3
local_prio=4

remote_prio=2

local_prio=3
remote_prio=4

local_prio=3 local_prio=3

local_prio=4

(b)

Figure6: Livelockexample.

Algorithm 6 : Livelockavoidanceprocedure
Procedure livelock_avoidance
begin

if ((local_counter>remote_counter) OR
((local_counter==remote_counter) AND
(local_node_id>remote_node_id))) then { local re-

quest receives priority: }
counter w counter - 1
send NACK to remote requester
NStatus[i] w RESERVED

else { remote receives priority }
counter w counter + 1
send CTS to remote requester
NStatus[i] w RECEIVING & OUTSTANDING_RTS

end

13

aseparateprocedure(Algorithm 6 andTable2). This priority-basedalgorithmis runby
eachNIC whenever a livelock is possible,which is every time an incomingrequestis
receivedwhile an outgoingrequestis pending.At initialization time, every NIC is as-
signedadefaultpriority level. Eachtimea potentiallivelockis detectedtheprioritiesof
theremoteNIC (incomingrequest)andthelocal NIC (outgoingrequest)arecompared.
Therequestwith lower priority is aborted.If theprioritiesareidentical,the identifiers
of the local andremotenodeareusedinstead.Finally, in orderto ensurefairness,the
localpriority is updatedin thefollowing way: if thelocal requestwins,thelocalpriority
is decremented,otherwiseit is incremented.

An exampleis shown in Figure6(b). In this example,thepotentiallivelockedsitua-
tion appearswheneachnodesendsanoutgoingrequest,andwhile this is still pending,
it receivesan incomingone. NIC-i andNIC-j have lower priority thanthe sourceNIC
of their incomingrequests(NIC-k andNIC-i, respectively), so they senda CTS to the
requesterNICs. On theotherhand,NIC-k hasa higherpriority thanits requesterNIC
(NIC-j), soit sendsit a NACK. Eventually, everyNIC receivesa reply. NIC-i receivesa
CTSandrejectsit sinceit hasgranteda connectionto thehigherpriority NIC-k. NIC-j
receivesa NACK for its requestand ignoresit sinceit hasbeenpreviously granteda
pathto NIC-i. NIC-k receivesa CTSwhich grantsit thepathfor therequestedsending.
Finally, NIC-j receivesan ABORT from NIC-i andbecomesfree again. NIC priori-
tiesareupdatedasstatedabove,NIC-i andNIC-j incrementtheir priorities,andNIC-k
decrementsits one.All thepossiblestatesandtransitionsaredepictedin Tables1 and2.

4.3 Hybrid algorithm

The rail reservation protocolemployed by the dynamicalgorithm incursan overhead
for every messagesent. For shortmessages,this overheadcould becomesignificant,
comparedto the time it takesto sendthe message.We thereforeimplementeda third,
hybrid approach,shown in Algorithm 7. The statusof the NIC is not modifiedwhen
sendingshortmessages,thus,additionalmessagesmight be simultaneouslyreceived.
Moreoveronthenetwork sideof theNIC anincomingshortmessageis alwaysaccepted
even if the NIC is sendinganothermessage.Thesemessagesmay causebidirectional
traffic duringshortperiodsof time (thetime neededto sendor receivea shortmessage,
in theworst case).A shortmessageis never striped,sincethestripingoverheadis not
justifiedin this case.Rather, it is senton a singlerail which is chosenin a round-robin
fashionto ensurefairness.

Algorithm 7 : Hybrid allocation(PEprocess)
Procedure Hybrid_Allocation_PE
Input: message (M), destination node (dest), striping ra-
tio (str_r)
begin

if |M| � SHORT_MESSAGE_LENGTH then
F w {n|Nstatus[n]=FREE} { Set of free NICs }
select s � F using round-robin
send M to dest using NIC s

else
call Dynamic_Allocation_PE (M, dest, str_r)

end

14

Thethresholdusedby thealgorithmto distinguishbetweenlongandshortmessages
is an importantparameter. This valuehasto be carefully selectedto provide the best
performance.If thevalueis too small, thedynamicalgorithmcouldbeappliedto mes-
sagesfor whichstripingandguaranteedunidirectionalbustraffic wouldnotbeeffective.
If toolarge,theallocationpolicy approximatesthebasicalgorithm.Severalexperiments
have beencarriedout in order to analyzethe influenceof this parameteron network
performanceanddetermineits optimalvalue,andtheresultsareshown in Section6.

5 Experimental Framework

This sectionoffers detailson our simulationplatform, the workloadsthat weresimu-
lated,andthemetricsof interest.

5.1 Simulation model

In the experimentalevaluation,we focusour attentionon a family of fat-treeintercon-
nectionnetworks,rangingfrom �
� to

E ��� SMPs,with four processorsperSMP. Unless
otherwisestated,a configurationwith 4 rails is used.Sincetheperformancebottleneck
is usuallythe PCI bus, the network topologyis not releventandsimilar resultsareex-
pectedfor othertopologies.The simulationmodeltries to capturethe most important
characteristicsof theQsNetat thegranularityof theclock cycle. Thesimulatormodels
wormholeflow-control,with two virtual channelson eachphysicalchannel.The input
buffers on eachvirtual channelcancontainup to

E �
� flits [4], eachconsistingof two
bytes.A flit canbetransmittedover a physicalchannelin a singleclock cycle, while a
packetcanberoutedthroughanElite switchin six clockcycles.

Thesimulatoralsomodelsa threadprocessorin theNIC, which canprocessincom-
ing control anddatapacketsandcansenda reply in a few hundredsof clock cycles.
Anotherimportantcharacteristicis theunidirectionalityof theI/O bus,whichcantrans-
mit datain onedirectionat a time. We alsoassumethat thebusbandwidthis equalized
with theexternalnetwork bandwidth(anoptimisticsetof assumptions,giventhecurrent
stateof theart).

This modelis evaluatedin theSMART (Simulatorof MultiprocessorARchitectures
andTopologies)environment[9]. Implementedin C++, SMART is anobject-oriented,
discrete-eventsimulationtool for evaluatingparallelarchitecturesandhighperformance
interconnectionnetworks.

5.2 Communication patterns

In our modeleachprocessgeneratespacketsindependently, usingthreerandomvari-
ables:� themessagesize,which is exponentiallydistributedwith a givenmeanvalue,� theinter-arrival time,alsoexponentiallydistributedaroundagivenmeanvalue,� andthedestinations,which arerandomlychosenwith equalprobabilitybetween

theprocesses.

15

We considera setof communicationalgorithms,includinga baselinebasicalgorithm,
andthe dynamicalgorithmsdescribedin Sections3 and4. The basicalgorithmdoes
not useany protocol;whenevera nodeneedsto senda message,it sendsit on onerail,
choosingit in round-robinfashion.This basecasecanserve to illustratethe effectsof
boththeoverheadof otherprotocolsandthepenaltiesof bidirectionaltraffic.

5.3 Metrics

Theperformanceof aninterconnectionnetwork underdynamicloadis usuallyassessed
by two quantitativeparameters,theacceptedbandwidth, or throughput, andthe latency.
Acceptedbandwidthis definedas the sustaineddatadelivery rategiven someoffered
bandwidthat the network input. Two importantcharacteristicsarethe saturationpoint
and the sustainedrate after saturation. Saturationis definedas the minimum offered
bandwidthwherethe acceptedbandwidthis lower thanthe global packet creationrate
at the sourcenodes. It is worth noting that, beforesaturation,offered and accepted
bandwidtharethesame.Thebehavior abovesaturationis importantbecausethenetwork
and/orthe allocationalgorithmscanbecomeunstable,leadingto a sharpperformance
degradation.Weusuallyexpecttheacceptedbandwidthto remainstableaftersaturation,
for examplein the presenceof burst-modeapplicationsthat requirepeakperformance
for a shortperiodof time [5].

Theexperimentalresultsof eachtraffic arepresentedusingtwo graphs,oneto dis-
playtheacceptedbandwidthandtheotherto displaythenetwork latency. In bothgraphs,
thex-axiscorrespondsto theofferedbandwidthnormalizedwith theunidirectionalband-
width of thelinks connectingtheprocessingnodesto thenetwork switches.Thismakes
theanalysisindependentof thelink bandwidthandtheflit size.

Wereportthelatency in cyclesratherthanabsolutetime, in orderto makeouranaly-
sisinsensitive to technologicalchanges.GiventhattheI/O busin thenetwork interface
canonly allow unidirectionaltraffic, themaximumachievablethroughputunderuniform
traffic is only ���3� of thenominalinjectionbandwidth.The intuition behindthis limit
is the following: let us considerfor examplea clusterwith only two SMPsandsingle
network rail; underuniformtraffic, only oneSMPcansendto anotheratany giventime,
dueto theunidirectionalityconstraintin theendpoints.

6 Experimental Results

In this section,we try to provide insight into someimportantaspectsof the multirail
allocationalgorithms. We first study the impact of network load, messagesize, and
stripingon the basicanddynamicalgorithmsusing4 rails. Then,we analyzehow the
algorithmsperformwhenthe numberof nodesandthe numberof rails arescaledup,
andwe integratetheseresultsin theevaluationof thehybridalgorithm.

6.1 Bandwidth and latency

Thefollowing resultswereobtainedby simulating

E �
� SMPs(nodes),four railsandfour
PEsper SMP. Figures7-10 comparetheacceptedbandwidthandnetwork latency asa
functionof the offeredbandwidth.Two differentvaluesfor the averagepacket size,4

16

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

A
cc

ep
te

d
lo

ad�

Offered load

Algorithm comparison: bandwidth

basic 4KB
dynamic w/o striping 4KB

local dynamic w/o striping 4KB
dynamic striping 4KB

local dynamic striping 4KB

Figure7: Bandwidthfor 4KB averagemessagesize.

and64 KB, arecomparedin theexperiments.Thesegraphsshow the performancefor
thebasic,local-dynamicanddynamicalgorithms.Giventhat themessagelatency goes
to infinity afterthesaturationpoint,we only reportthelatency whenthenetwork is not
saturated.

We can seethat the basicalgorithm performsrelatively well on short messages,
but its performancedecreasesas the messagesize increases.The dynamicalgorithm
behavesin theoppositemanner, performingpoorlyonshortmessages,andincreasingin
performanceasthemessagesizegrows. The local-dynamicalgorithmexhibits similar
performanceto thebasicalgorithm(althoughit achieveslower latencieswhenstriping
is used),performingbetter than the basic for larger messagesand worsefor shorter
messages.This suggeststhat we may benefitfrom usingthe hybrid approach,where
shortmessagesaresentusingthebasicprotocolandlong messagesusingthedynamic
protocol.

6.2 Effect of striping

Figures7-10alsodepicttheeffectof messagestripingwheneverpossiblein thedynamic
andlocaldynamicapproaches.Figure11showsthelatency vs. theaveragemessagesize
for anofferedloadof � F-E � . We usedanaggressiveapproachfor striping,usingonly full
striping andno intermediatevalues. Resultsnot shown hereindicatethat it is always
bestto stripeasmuchaspossible.

Stripingdoesnot seemto have a significanteffect on any protocol’sacceptedband-
width. However, it doesreducethelatency of sendingmessages,especiallyasthemes-
sagesizegrows (which makesthe striping overheadlesssignificant)and load dimin-
ishes(which allows a highereffective striping ratio). It canbe seen,for example,that
for an averagemessagesizeof � � KB anda load of �	� (Figure10), striping reduces
thedynamicandlocal-dynamiclatenciesby approximately� �
� and � �	� respectively.

17

0

5000

10000

15000

20000

25000

30000

35000

40000

0.05 0.1 0.15 0.2 0.25

La
te

nc
y

(c
yc

le
s)

Offered load

Algorithm comparison: latency

basic 4KB
dynamic w/o striping 4KB

local dynamic w/o striping 4KB
dynamic striping 4KB

local dynamic striping 4KB

Figure8: Latency for 4KB averagemessagesize.

0.05

0.1

0.15

0.2

0.25

0.3

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

A
cc

ep
te

d
lo

ad�

Offered load

Algorithm comparison: bandwidth

basic 64KB
dynamic w/o striping 64KB

local dynamic w/o striping 64KB
dynamic striping 64KB

local dynamic striping 64KB

Figure9: Bandwidthfor 64KB averagemessagesize.

18

0

20000

40000

60000

80000

100000

0.05 0.1 0.15 0.2 0.25 0.3 0.35

La
te

nc
y

(c
yc

le
s)

Offered load

Algorithm comparison: latency

basic 64KB
dynamic w/o striping 64KB

local dynamic w/o striping 64KB
dynamic striping 64KB

local dynamic striping 64KB

Figure10: Latency for 64KB averagemessagesize.

Thebetterlocal-dynamicresultsat low loadsarisefrom the lower overheadassociated
with sendingamessage(thereis nopathreservationin thelocal-dynamicalgorithm).At
higherloads(above15%)thedynamicapproachoutperformsthelocal-dynamicbecause
theprotocoloverheadis compensatedwith thelow latency providedby thereservedpath.
In bothcases,stripingis usefulwith low loadsthatoffer ahighprobabilitythatrailswill
befree.

FromFigure11it canbeseenthatfor shortaveragemessagesizes(below

E � KB) the
bestresultsareobtainedwith the local-dynamicallocationalgorithmwith full striping.
For longermessagesthe dynamicallocationalgorithmwith full striping provides the
bestperformance.

6.3 Node scalability

Theeffect of increasingthenumberof nodeson themaximumacceptedload is shown
in Figure12 for anaveragemessagesizeof �
� KB. Thedynamicalgorithmoutperforms
the basicalgorithmby � � � for �
� nodesand ���
� for

E ��� nodes. Thesealgorithms
scalereasonablywell, with a lossof � � -

E �
� in maximumacceptedbandwidthwhen
thenetwork sizeis quadrupledfrom �
� to

E �
� nodes.

6.4 Rail scalability

In orderto understandthebehavior of thealgorithmsasafunctionof thenumberof rails,
wetestedconfigurationsof one,two, andfour railswith �	� nodes,eachhaving four PEs,
andusingaveragemessagesizesin therange

E
KB- �
� � KB. Theresultsaredesplayedin

Figure13.
For thedynamicallocationweshow full stripingonly, sincethemaximumbandwidth

is hardlyaffectedby striping(dueto thelow probabilityof reservingmorethanonerail

19

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

1 2 4 8 16 32 64 128

La
te

nc
y

(c
yc

le
s)

Average message size (KB)

basic
dynamic w/o striping

local dynamic w/o striping
dynamic striping

local dynamic striping

Figure 11: Latency vs. messagesize with an offered load of 0.15. The latency for
messagesshorterthan � KB is notshown for thedynamicallocationbecausethenetwork
is saturatedwith this load.

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

32 64 128

M
ax

im
um

 a
cc

ep
te

d
lo

ad�

Network size (nodes)

basic
dynamic w/o striping

local dynamic w/o striping
dynamic striping

local dynamic striping

Figure12: Maximumacceptedloadvs. network sizeusing4 rails andaveragemessage
sizeof 32KB.

20

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 4 8 16 32 64 128 256

M
ax

im
um

 a
cc

ep
te

d
lo

ad�

Average message size (KB)

basic 1 rail
basic 2 rails
basic 4 rails

dynamic 1 rail
dynamic 2 rails
dynamic 4 rails

Figure13: Maximumacceptedloadvs. averagemessagesizefor 32nodes.

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

1 2 3 4 5 6 7

M
ax

im
um

 a
cc

ep
te

d
lo

ad�

Rails

basic
local dynamic

dynamic

Figure14: Maximumacceptedloadvs. numberof rails for 32 nodesandaveragemes-
sagesizeof 32KB.

21

0

10000

20000

30000

40000

50000

60000

70000

1 2 3 4 5 6 7

La
te

nc
y

(c
yc

le
s)

Number of rails

Scalability comparison: latency vs. rails

basic
dynamic w/o striping

local dynamic w/o striping
dynamic striping

local dynamic striping

Figure15: Scalabilityanalysisfor latency with injectionloadof 0.15andaveragemes-
sagesizeof 32KB.

for high injectionrates).Theofferedloadis normalizedby dividing it by thenumberof
rails, sothat theresourcerequirementmatchesthe increasein availableresources,thus
giving aclearerview of thenetwork’sscalability. Again,weseethedynamicalgorithm’s
performanceincreasingwith messagesize,for any numberof rails, while thebasical-
gorithm’s performancedecreases,this resultsupportingthe ideaof a hybrid approach.
More importantly, we seethat themaximumbandwidthobtainedusingthedynamical-
gorithm is almostconstantfor any numberof rails (and even improveswhenadding
morerails, for messageslargerthan

E � KB). Thiscanbeclearlyseenin Figure14which
showsthemaximumacceptedloadvs. numberof rails (up to seven)for anaveragemes-
sagesizeof �
� KB. This graphconfirmsthat the dynamicallocationalgorithmslightly
improvesits bandwidthwhenthe numberof rails is increased.On the otherhand,the
basicalgorithm degradessignificantly whencomparedwith the single-rail configura-
tion (a �	�3� bandwidthreductionin themaximumacceptedloadwith sevenrails when
comparedto thesingle-railtopology).Thereasonfor this is thatasthenumberof rails
grows,sodoestheaveragesendingloadof eachprocessor(thenumberof processorsis
fixed). Thebasicapproachusesa round-robinrail selectionmethod,ignoringthestate
of theNICs. It thereforebecomesmoreprobablefor theprocessorsto self synchronize
thechoiceof therails, leadingto a performanceloss.

In Figure15 we canobserve the effect of thenumberof rails on latency. The data
wereobtainedfrom experimentswith aninjectionloadof � FGE � , using �	� nodes(four PEs
pernode)andanaveragemessagesizeof �
� KB. Thebasicalgorithm’s latency actually
increaseswith the numberof rails, dueto the inefficiency of the round-robinmethod,
asdiscussedabove. This is confirmedin the simulationtracesthat show the injection
latency to bethesourceof thelatency growth. As expected,stripingreducesthelatency
whenthe numberof rails is increasedfor the dynamicalgorithms,with an advantage
to thelocal-dynamicalgorithm. It is interestingto notethatevenwith no striping,both

22

0.05

0.1

0.15

0.2

0.25

0.3

1 2 4 8 16 32 64 128

A
pp

ro
xi

m
at

e
ac

ce
pt

ed
 lo

ad
 a

t s
at

ur
at

io
n

�

Average message size in KBytes

Algorithm comparison: Saturation point as function of message size

basic
local-dynamic

dynamic

Figure16: Saturationpointasa functionof messagesize.

dynamicalgorithmsscalewell with thenumberof rails.

6.5 Effect of message size on saturation point

Anotherimportantfeatureof theallocationalgorithmsis thesaturationpointfor different
messagesizes.Theexperimentaldatasetthatwasusedto obtainthe saturationpoints
for eachmessagesizeis thesameasin 6.1.Theresultsareshown in Figure16.

We canseethat the dynamicalgorithm’s saturationpoint increaseswith the mes-
sagesize,while thebasicandlocal-dynamicalgorithmsretainanear-constantsaturation
point. Theseresultssuggestthat thedynamicalgorithmscalesbetterwith themessage
sizethando theothertwo. Onepossibleexplanationfor this is that the dynamicalgo-
rithm ensuresthatno conflictswill occuron any rail. Theseconflictsaremorelikely as
themessagesizeincreasesandrails areunavailablefor longerperiodsof time.

6.6 Hybrid approach

The resultsobserved in 6.1 and 6.5 indicatethat the basicalgorithm performsbetter
on shortermessages,while thedynamicalgorithmperformsbetteron longermessages.
It may thereforebe useful to try a hybrid approach,that usesthe basicalgorithmfor
messagesshorterthana given threshold,andthe dynamicalgorithmotherwise. (This
thresholdis implementedin Algorithm 7 asSHORT_MESSAGE_LENGTH).

Several short messagesize thresholdswere testedand comparedin the dynamic
andbasicalgorithms.We used

E ��� nodesof four PEseachwith four rails, an average
messagesizeof �
� KB, andshortmessagesize thresholdsof

E
, � , � , E � , and �	� KB.

Figures17-20show thebandwidthandlatency obtainedwith andwithoutstriping.
It canbeclearlyseenfrom theseresultsthat thehybrid approachoutperformsboth

thedynamicandthebasicapproachesin termsof bandwidthfor almostall thethresholds

23

0.05

0.1

0.15

0.2

0.25

0.3

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

A
cc

ep
te

d
lo

ad�

Offered load

hybrid algorithm comparison: bandwidth w/o striping

basic
dynamic

hybrid 1KB threshold
hybrid 4KB threshold

hybrid 16KB threshold
hybrid 32KB threshold

Figure17: Hybrid bandwidthwithout striping.

chosen,regardlessof striping. With the exceptionthat at a thresholdof �	� KB, hybrid
performssomewhat worsethandynamicfor low injection rateswhenstriping is used,
hybrid otherwiseoutperformsboth the dynamicandbasicapproachesfor latency, re-
gardlessof striping,similar to theobservationfor bandwidth.This maystemfrom the
fact thatmessagesshorterthanthe thresholdaresentwith no striping (asin basic),so
thelatency for relatively largemessagescanbelower if stripingis used(Figure20). On
theotherhand,whennostripingis used,thedynamicalgorithmperformsworsethanthe
hybridmethodsfor low injectionrates,andalmostthesameor betterfor higherinjection
rates.Thiscanbeexplainedby thefactthatthedynamicapproachhasalargersaturation
pointfor averagemessagesizeof �
� KB thanthebasicapproach(see6.5),andthehybrid
approachusesthebasicalgorithmfor shortmessagesizes.

7 Conclusions

Oneof thenovel methodsthatcanbeusedto increasecommunicationperformanceand
enhancefault tolerancein a clusterof workstationsis to useparallel independentnet-
works(rails). In this paper, we exploredvariousaspectsof multirail interconnectsand
presentedseveral rail allocationalgorithmsfor efficient usageof the rails. We have
shown thatthedynamicalgorithmcanperformrelatively well in termsof bandwidthfor
sufficiently largemessagesizes,andcanhandlea relatively high loadbeforesaturating.
Furthermore,it hasbeenshown that this algorithmis scalabledueto its adaptive na-
ture- increasingthenumberof rails from oneto sevenincreasesthemaximumrelative
bandwidthin a linearmanner. Superlinearityis achievedfor messageslargerthan � KB.
Furthermore,thebandwidthincreasesasthemessagesizeincreases,unlike thecasefor
otherapproaches.Incorporatingprotocol-freeshortmessagehandlingwasshown to in-
creasethemaximumbandwidthby up to � F �	� morethanthepuredynamicalgorithm,
andup to � � F � � and �
� F � � morethanthebasicandlocal-dynamicapproachesrespec-

24

20000

25000

30000

35000

40000

0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24

La
te

nc
y

(c
yc

le
s)

Offered load

hybrid algorithm comparison: latency w/o striping

basic
dynamic

hybrid 1KB threshold
hybrid 4KB threshold

hybrid 16KB threshold
hybrid 32KB threshold

Figure18: Hybrid latency without striping.

0.05

0.1

0.15

0.2

0.25

0.3

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

A
cc

ep
te

d
lo

ad�

Offered load

hybrid algorithm comparison: bandwidth with striping

basic
dynamic

hybrid 1KB threshold
hybrid 4KB threshold

hybrid 16KB threshold
hybrid 32KB threshold

Figure19: Hybrid bandwidthwith striping.

25

10000

15000

20000

25000

30000

35000

40000

0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24

La
te

nc
y

(c
yc

le
s)

Offered load

hybrid algorithm comparison: latency with striping

basic
dynamic

hybrid 1KB threshold
hybrid 4KB threshold

hybrid 16KB threshold
hybrid 32KB threshold

Figure20: Hybrid latency with striping.

tively. We have also shown that striping a messageover several rails canbe usedto
obtaina significantreductionof latency whenloadis low.

Acknowledgements We thankJoséDuatofor spearheadingthe project,for pointing
out thelimitationsof thestaticapproachandsuggestingthedynamicallocationstrategy
asapromisingvenueof research.

References
[1] DanielCassiday. Infinibandarchitecturetutorial. Hot Chips12Tutorial,August2000.

[2] SalvadorColl, EitanFrachtenberg, FabrizioPetrini,Adolfy Hoisie,andLeonidGurvits.StaticAllocation
of Multirail Networks. Technicalreport,Los AlamosNationalLaboratory, Los AlamosUnclassified
Report01-3896,2001.

[3] SalvadorColl, EitanFrachtenberg, FabrizioPetrini,Adolfy Hoisie,andLeonidGurvits.UsingMultirail
Networksin High PerformanceClusters.In Third IEEEInternationalConferenceonClusterComputing
(Cluster’01), Newport Beach,CA, USA, October2001.

[4] William J.Dally. Virtual ChannelFlow Control.IEEETransactionsonParallel andDistributedSystems,
3(2):194–205,March1992.

[5] JoséDuato, SudhakarYalamanchili,and Lionel Ni. InterconnectionNetworks: an AngineeringAp-
proach. IEEEComputerSocietyPress,1997.

[6] CharlesE. Leiserson. Fat-Trees: UniversalNetworks for HardwareEfficient Supercomputing.IEEE
TransactionsonComputers, C-34(10):892–901,October1985.

[7] D. Lubell. A shortproofof Sperner’s theorem.Journal of CombinatoryTheory, 1(299),1966.

[8] Fabrizio Petrini, Adolfy Hoisie,Wu chunFeng,andRichardGraham. PerformanceEvaluationof the
QuadricsInterconnectionNetwork. In Workshopon CommunicationArchitecture for Clusters (CAC
’01), SanFrancisco,CA, April 2001.

[9] FabrizioPetriniandMarcoVanneschi.SMART: a Simulatorof Massive ARchitecturesandTopologies.
In InternationalConferenceon Parallel andDistributedSystemsEuro-PDS’97, Barcelona,Spain,June
1997.

26

[10] QuadricsSupercomputersWorld Ltd. ElanReferenceManual, January1999.

[11] QuadricsSupercomputersWorld Ltd. Elite ReferenceManual, November1999.

27

